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1. Selection criteria for functional performance 

In the Experimental Procedure of the main text, we have described the mathematical definition 

of the functional performance (see also Figure S5, OUTPUT I) and the criteria for discarding 

certain “ill-behaved” circuits. In particular, the circuit is discarded if there is a sustained 

oscillation. If the oscillation is under-damped, the circuit may still eventually adapt. However, 

too large a swing in the output may compromise the functionality of adaptation. We chose to set 

a criterion to discard those circuits with large swings, even they may adapt eventually. 

Specifically, in case of under-damped oscillation, we monitored two values shown in Figure S5 

(OUTPUT II): the height of the first peak relative to the initial steady state, Opeak1 and the height 

of the second peak, also relative to the initial steady state, Opeak2. The circuit is discarded from 

the functional map unless the first peak is larger than twice of the second one, i.e. Opeak1>2Opeak2. 

 

2. Comparison of negative feedback loops with and without buffer node 

One of our main results is that a negative feedback loop with a buffer node is capable of perfect 

adaptation while a negative feedback loop without a buffer node is not (see Figure 2A). Here we 

use two examples to further illustrate the importance of the buffer node in achieving perfect 
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adaptation. Both of the example networks are 3 node networks with a single negative feedback 

loop (Figure S6). The first network has the loop go through the nodes in the order ACBA (Figure 

S6, upper panel). In this case, the output node C first goes to the regulator node B, which in turn 

feeds back to the input node A. The second network has the loop go in the order ABCA (Figure 

S6, lower panel). In this case, the output node C directly feeds back to the input node A. The 

corresponding phase space and nullcline of the two networks are also shown in Figure S6. For 

the first network, which is capable of perfect adaptation, the B-nullcline (black line) is 

unchanged while the C-nullcline (red lines) moves horizontally with the change of input. For the 

second network, the situation is reversed: the C-nullcline (black line) does not move while the B-

nullcline (red lines) moves vertically in response to the input change. The steady state values B* 

and C* are determined by the intersection of the black and red nullclines. For the first network, 

the C* changes little (if the B-nullcline is flat enough) while B* changes considerably with 

respect to the input change. On the contrary, for the second network C* changes considerably 

corresponding to the input change while B* does not change much. We see that the roles of Node 

B and Node C are exchanged in the two networks. This can also be seen from their kinetic 

equations: the equations for the second network are the same as for the first one if we rename the 

node B as C and C as B. So in the second network, Node C becomes the buffer node. Because 

we fix our output on the node C, the relative position of the nodes on the negative feedback loop 

is important.  

 

3. The incoherent feed-forward loop in which A and B acting on C with the same sign  

With A and B acting on Node C with the same sign (positive or negative), A represses B would 

make an incoherent feed-forward loop. This kind of incoherent feed-forward loop cannot achieve 
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prefect adaptation. For the example shown in Figure 2B (bottom panel), with both A and B 

positively regulating C, the kinetic equations are: 
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To have perfect adaptation, C* must be independent of both A* and B*. From the third equation 

in Eq. (S1) in which the first two terms are both positive, we see that it is impossible to have A* 

and B* both disappear from the steady state equation for C in any way that is robust.  

 

4. Motif analysis of the 395 adaptation networks 

The 395 adaptation networks are randomized to serve as the NULL space. Specifically, we 

randomly select two networks among the 395 networks and exchange their links at a randomly 

selected position (e.g. A to B) if and only if there is a link in both networks at this position. 1000 

randomized ensembles of 395 networks are generated in this way. The average number of 

appearance f  and the standard deviation d of each motif in these ensembles are then obtained. 

The “Motif over-representation” in Figure 4 is defined as ( f − f ) / d , where f is the number of 

appearance of the motif in the 395 adaptation networks. 

In order to find any commonalities among these 395 overrepresented robust topologies 

for adaptation, we first searched for over-represented motifs (Figure S7) in these networks. We 

used all the 2-node and 3-node feedback and feed-forward loops as motifs, and compared their 

frequency of appearance in the 395 adaptation topologies with ensembles of randomized 

networks (Experimental Procedures). The results clearly indicate that specific negative feedback 
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loops and some incoherent feed-forward loops are over-represented. The common feature for 

most over-represented negative feedback loops is that they lack a link in which the output node C 

directly feeds back on the input node A. The common feature of the most over-represented 

incoherent feed-forward loops is that the node C is regulated by the nodes A and B with 

opposing signs. These observations for the entire architecture space are consistent with our 

previous observations gleaned from analysis of minimal circuits – the minimal architectures that 

are sufficient for adaptation are all overrepresented within the best complex architectures capable 

of adaptation.  

 

5. Analysis of NFBLB class with positive self-loop on B 

We found that a subset of NFBLB class of adaptation networks have a positive self-loop on the 

buffer node B. This type of topology achieves perfect adaptation with a similar geometric 

interpretation as in the NFBLB topologies without this positive loop, i.e. a flat B-nullcline near 

the steady states (Figure S8). However, in contrast to those NFBLB topologies without the 

positive self-loop, here the flat B-nullcline is accomplished through a very different mechanism 

than ultrasensitivity. This can be easily gleaned from the updated equations for B, reflecting the 

auto-regulation (Figure S8):  

  

dB
dt

= BkBB

(1− B)
(1− B) + KBB

− Ck 'CB

B
B + K 'CB

.  (S2) 

We can have a steady state C* that is independent of B* if (1-B)>>KBB and 'CBB K<< . Under 

these conditions, Eq. (S2) can be approximated as 
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BB CB
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where * ' / 'BB CB CBC k K k= . Thus, when the auto regulation loop works in the saturated region and 

the negative regulation from C to B works in the linear region, this topology can achieve perfect 

adaptation (and in this case the B-nullcline is perfectly flat). Here it is the logarithm of B, instead 

of B itself, that integrates the adaptation error. To see this, rewrite Eq. (S3) as 

ln / ' ( * ) / 'CB CBd B dt k C C K= − . So Log (B) is the integrator and B = B * (I0)e
(k'CB / K 'CB ) (C*−C )dτ

0

t

∫  

feedbacks to Node C. This seems to be a special form of the integral control. Figure S8 

illustrated the effect of the key parameters to the adaptation precision. Expectedly, high 

adaptation precision is achieved by letting the two key parameters go to the required limits and 

large sensitivity is achieved through the separation of time scales between the response time and 

the recovery time of Node C. 

 

6. Theoretic analysis for the classification of all adaptation circuits 

In the next two sections, we present a general analysis for conditions leading to perfect 

adaptation. The end products of this analysis are: (1) all 3-node circuits that are capable of 

perfect adaptation fall into two topological classes, NFBLB and IFFLP; and (2) the control node 

B plays a defined role in each class with a set of regulation menu.  

 

6.1 General formulation 

For 3-node networks, the general kinetic equations are: 
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where Xi = A, B, C, EA, EB or EC are activating enzymes and Yi = A, B, C, FA, FB or FC are 

deactivating enzymes. Expanding Eq. (S4) around the steady state (A*, B*, C*), the linearized 

equations are: 
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It is easy to show that if there is no positive self-regulation on the node i, the corresponding αii is 

always negative. αii can only be positive for special parameter sets with positive self-regulation. 

The sign of βij depends solely on the sign of regulation. For example βBA is positive, negative, or 

zero if the regulation from B to A is positive, negative, or absent. Since we defined the input as 

activating, 
∂fA

∂ I
 is always a nonzero positive number. 

At steady state, 
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The relative adaptation error can be captured by the following equation: 
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is the Jacobian determinant. Perfect adaptation requires Eq. (S7) be 0. Since 
∂fA

∂ I
 and I are not 

zero, the only possibility is to make the minor M13 = 0  while maintaining a nonzero value for the 

Jacobian determinant J. Furthermore, the stability of the steady state requires a negative Jacobian 

determinant, i.e. J < 0. 

Let us analyze the conditions for M13 = 0 . There are two terms in Eq. (S8): βABβBC  and 

α BBβAC . Thus, the condition for Eq. (S8) be zero is that either both terms are 0 

( βABβBC = α BBβAC = 0 – the first category) or the two terms are equal but nonzero 

( βABβBC =α BBβAC ≠ 0 – the second category).  
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NFBLB class 

We show that the first category, βABβBC =α BBβAC = 0, corresponds to the adaptation networks of 

NFBLB class. Notice that these two terms are related with two signal pathways from Node A to 

Node C, respectively. The term βABβBC is related with the pathway A⇒B⇒C. βAB=0 would mean 

that there is no A⇒B link; βBC=0 would mean that there is no B⇒C link. βABβBC=0 would imply 

that at least one of the factors is zero and at least one of the links is missing so that there is no 

signal going from A to C through the pathway A⇒B⇒C. The other term αBBβAC corresponds to 

the pathway A⇒C. If βAC=0, A⇒C is missing, so that no signal can go directly from A to C. 

Because at least one of the two signal pathways must exist to transmit the signal and the pathway 

A⇒B⇒C does not exist in this case (βABβBC=0), A⇒C must be present. This implies βAC≠0. 

Thus αBB must be 0 to make αBBβAC =0. Therefore, this category can be classified into two 

(overlapping) cases: (a) αBB=0 and βAB=0 (while βBC can be either nonzero or zero), (b) αBB=0 

and βBC=0 (while βAB can be either nonzero or zero). We discuss each of these cases in the 

following. 

(a) αBB=0 and βAB=0 

In this case, there is no link from A to B and the Jacobian determinant J = βACβCBβBA-αAAβBCβCB 

(see Eq. (S9)). Note that the two terms in J correspond to two feedback loops, respectively. That 

is, βACβCBβBA is nonzero only if every factor in it is nonzero, which implies the existence of the 

three links A⇒C, C⇒B, and B⇒A. These three links form a feedback loop A⇒C⇒B⇒A. 

Similarly, αAAβBCβCB is nonzero only if there is a feedback loop C⇒B⇒C. Thus, a nonzero J 

requires that the network contain at least one of the two feedback loops. Since βCB is in both of 
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the terms in J (the link C⇒B is part of both feedback loops), C⇒B must exist in this case. It is 

worthwhile emphasizing that in both feedback loops the output node C first goes to the 

intermediate node B (buffer) before feeding back either to the input node A or to the output node 

C.  

Recall that the sign of the βij is the same as the sign of the link, e.g. if the link A⇒C is 

negative then βAC < 0, and that αAA < 0 (unless there is a positive self-loop on A – a case we will 

discuss in the next paragraph). The stability requirement of a negative J requires that at least one 

of the feedback loops is negative. Furthermore, two negative loops would make a more negative 

J (larger absolute value) and thus a smaller adaptation error (see Eq. (S7)) than a single negative 

loop. Therefore, this case of adaptation networks correspond to one or two negative feedback 

loops, using the node B as a buffer node. 

If there is a positive self-loop on node A, αAA can be positive with some parameter choices. 

In this case, a positive feedback loop C⇒B⇒C would make the second term in J negative, i.e. 

−α AAβBCβCB < 0 . However, note that J<0 is necessary but not sufficient for stability. J is equal to 

the product of all three eigenvalues. J<0 when either all of the three eigenvalues are negative (a 

stable steady state), or one of them is negative and the other two are positive (an unstable steady 

state). We can show that for the simple topology, A→A (self-positive loop), A⇒C (positive or 

negative), C⇒B⇒C (positive loop), the steady state that would otherwise achieve perfect 

adaptation is unstable. With one more link C⇒A added to this that topology so that there is a 

negative feedback loop A⇒C⇒A in the network, we found that the linearized equations can 

achieve perfect adaptation with certain parameter choices. To see if this topology can achieve 

perfect adaptation with the full nonlinear kinetic equations, we performed extensive numerical 
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analysis and found no sign of perfect adaptation. However, we do not have a rigorous proof to 

exclude this network from being able to perfectly adapt.  

 (b) αBB=0 and βBC=0 

In this case, there is no link from B to C and J = βACβCBβBA-αCCβABβBA. Similar to the analysis 

above, the circuit should contain at least one of the two negative feedback loops that go through 

the node B: A⇒C⇒B⇒A and A⇒B⇒A. Again, two negative loops would in general result in a 

smaller adaptation error than a single loop.  

 

IFFLP class 

The second category of zero adaptation error is βABβBC =αBBβAC ≠ 0 (see Eq. (S8)). Nonzero βAB, 

βBC and βAC imply the existence of the links A⇒B, B⇒C and A⇒C, that is, a feed-forward loop. 

Whether the feed-forward loop is coherent or incoherent depends on whether βABβBC/βAC = αBB is 

positive or negative. If there is no positive self-loop on the node B, it is easy to show that αBB is 

always negative. It can also be shown that if there is no feedback loops in the network (so that 

the Jacobian matrix is triangular) stability of the steady state requires all diagonal elements 

including αBB be negative, which holds even with the presence of a positive self-loop on B. Thus 

in all these cases, the FFL leading to perfect adaptation should be incoherent. 

On the other hand, there may exist some network topologies that contain a coherent FFL, a 

positive self-loop on B and at least one feedback loop that, with some special parameters, 

possess a stable steady state with αBB > 0. These topologies could achieve perfect adaption with 

the mechanism of IFFLP class. We will discuss one such example later.   
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7. The role of the control node B in perfect adaptation 

In this section, we elaborate the importance of the node B in controlling the adaptation precision. 

We present an analysis on the general forms of the regulation on the B-node and enumerate all 

possible B-regulations that can lead to perfect adaptation in both NFBLB and IFFLP classes of 

adaptation networks.  

Let us consider the kinds of mathematical relationships that a steady state equation of 

enzymatic reaction kinetics can establish robustly. The general steady state equation for a node 

(B) is 

1f 0
1i i

i i

B X B i Y B i
i iX A Y B

dB B Bk X k Y
dt B K B K

− ′= = − =
′− + +∑ ∑     (S10) 

where Xi (A, B, C, and/or basal) are the activating enzymes and Yi (A, B, C, and/or basal) the 

deactivating enzymes. In the limiting cases where all enzymes work in either the saturated or the 

linear region, Eq. (S10) becomes 

 1 0
i i i i

i i

X B i X B i Y B i Y B i
i saturation i linear i saturation i linearX A Y B

B Bk X k X k Y k Y
K K∈ ∈ ∈ ∈

− ′ ′+ − − =
′∑ ∑ ∑ ∑   (S11) 

where we have split up the sums into saturating enzymes and linear enzymes. With various 

choices of activating/deactivating enzymes and their working limits, Eq. (S11) can establish 

various robust mathematical relationships among the steady state values of the nodes, A*, B* and 

C*. For convenience, we refer to the mathematical relationships established by Eq. (S11) as the 

B-algebra. We have seen examples of the B-algebra in our discussions of adaptation 

mechanisms in several example networks in the main text (Eqs. (3) and (6)) and in the 

supplement (Eq. (S3)). The B-algebra plays a very important role for achieving robust perfect 

adaptation. Note that only a subset of B-algebra (and thus their corresponding B-regulation) can 

be used for adaptation purposes. For the NFBLB class, the B-algebra should be in the form of 
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αA*+γC*+δ = 0, where either all three constants α, γ and δ are nonzero, or any one of them is 

zero. For the IFFLP class, the B-algebra should establish a proportionality relationship: A*∝ 

g(C*)B*, where g(C*) is a nonzero function of C*. We list in Figure S9 and Figure S10 all the 

B-regulation and the corresponding B-algebra that can be used to achieve perfect adaptation in 

the two classes of adaptation networks. In the following we present a general discussion on the 

implementation of the B-algebra in each class.  

  

NFBLB class 

As we showed in the previous section, for this class of adaptation networks αBB=0. There are 

only two ways to robustly achieving this: either fB does not depend on B explicitly, i.e. fB = 

g(A,C) (Case 1), or the dependence on B in fB is factorizable, i.e. fB = f(B) × g(A,C), so that the 

steady state condition g(A*,C*) = 0 guarantees f / 0B B∂ ∂ =  at the steady state (Case 2). As can 

be seen from Eq. (S11), in our enzymatic model, the function g(A,C) can only take linear forms 

in A and/or C, while f(B) can only be proportional to B. For Case 1, the independence of fB on B 

can be realized by not allowing any self-regulation on B and by saturating all enzymes on B-

node. For Case 2, the required functional form of fB can be realized by introducing a positive 

self-regulation on B that works at saturation and by letting other enzymes on B work in the linear 

region (an example of this case was discussed in the section “Analysis of NFBLB class with 

positive self-loop on B”). In both cases, the general form of the B-algebra is αA*+γC*+δ = 0. 

We discuss below all possible B-regulations and the corresponding B-algebra that can help 

achieve perfect adaptation in each of the two subsets of the NFBLB class. 

(a) αBB=0 and βAB=0  
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In this case the links A⇒C and C⇒B must exist while A⇒B must be absent. βBC can be either 

nonzero or zero, so the link B⇒C can be either present or not. The steady state equations are 

fA(I,[A*],[B*],[C*])=0,  fB([B*],C*)=0, fC(A*,[B*],[C*])=0. The square brackets indicate that the 

variable may or may not exist depending on the network topology and the specific parameter 

regions the enzymes are working in. We can see that in this case fA always contain the input I 

and fC always contain the variable A, while fB is independent of A. Thus C* cannot be set to a 

constant (independent of I) by the two steady state equations fA=0 and fC=0. But we can set C* 

to be a constant with fB=0. The possible forms of fB in this case are: fB(C)=γC+δ (only C 

regulates B and all MM terms are saturated) and fB(B,C)=B(γC+δ) (B activates B working at 

saturation and C represses B working in the linear region) -- both forms of fB correspond to a B-

algebra of the form γC*+δ=0. 

(b) αBB=0 and βBC=0 

In this case, the links A⇒C and B⇒A must exist, and the link B⇒C is absent. The steady state 

equations are fA(I,[A*],B*,[C*])=0,  fB([A*],[B*],[C*])=0,  fC(A*,[C*])=0. We see that fA always 

depends on the input I. Let us focus on the other two equations fB and fC. If fB is independent of A 

i.e. no link from A to B, but dependent on C, the equation fB([B*],C*)=0 alone can set C* to be a 

constant, just like the case in (a), with or without a positive loop on B. The corresponding B-

algebra is also in the form of γC*+δ=0. If fB is dependent on A (an A⇒B link), but independent 

on C (no C⇒B link), the equation fB(A*,[B*])=0 can set A* to be a constant, with or without a 

positive self-loop on B. Since fC depends on A and does not depend on B in this case, C* depends 

solely on A* and hence will also be a constant. The B-algebra takes the form of αA*+δ=0. If fB 

is dependent both on A (an A⇒B link) and on C (a C⇒B link), we need two equations fB=0 and 
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fC=0 together to fix an input-independent steady state C*. The equation fB(A*,[B*],C*)=0 sets up 

a B-algebra αA*+γC*+δ=0, which, together with fC(A*,[C*])=0, fixes the C*.  

 

IFFLP class 

In this category, βABβBC =αBBβAC ≠ 0. In other words, we have 
∂ fB

∂A
∂ fC

∂B
−

∂ fB

∂B
∂ fC

∂A
= 0 , but none 

of the derivatives in the equation can be zero. The links A⇒B, A⇒C and B⇒C must all exist. 

Both fB(A,B,[C]) and fC(A,B,[C]) must depend on A and B, and at least one of them should also 

depend on C. So there are three variables in the two steady state equations: fB(A*,B*,[C*])=0 and 

fC(A*,B*,[C*])=0. We can have a C* that is independent of A* and B* only with some kind of 

special forms of fB and fC. A robust way to achieve this is (1) to have A and B regulating C with 

opposing signs and (2) to have B proportional to A. If fC(A,B,[C])=Af1([C])-Bf2([C]), at steady 

state A*f1([C*])=B*f2([C*]). If the other steady state equation fB(A*,B*,[C*])=0 can establish a 

proportionality relationship between A* and B*: A*=g([C*])B*, then C* can be solved from 

these two equations and is independent of A* and B*. It is easy to see that fB should take a form 

of f ( )B A g C Bα= − . Thus, the B-regulation in the IFFLP category of adaptation networks 

establishes a B-algebra of the form A*∝ g(C*)B*, and the node B serves as a proportional node. 

We list in Figure S10 the regulations on B that can robustly (i.e. with the enzymes working in the 

two limits) generate the B-algebra of the desired form.  

 

8. Violations of the required B-algebra compromise the network robustness 

We found that although most of the adaptation networks can be classified with the listed B-

regulations in Figures S9 and S10, 5 out of 166 in the NFBLB class and 33 out of 229 in the 

IFFLP class fall out of this classification. We closely examined each of them, and found that 
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none of them can achieve perfect adaptation. We found that all of them made it to the list of 

robust networks (Q > 10) by “hitchhiking” to more robust networks. That is, if a network is 

rather robust, then they could carry some additional “bad” (or “neutral”) links and still be 

reasonably robust (the resulting network could have a Q>10). Consequently, we found that in all 

these cases, by removing the “bad” additional link(s), the network restores the “legitimate” B-

regulation of perfect adaptation and its robustness increases. We also found that (not surprisingly) 

hitchhiking is rather common among the 395 “robust” networks, and these “bad” or “neutral” 

links can appear in various places in the network.  

We show here one specific example in which the additional “bad” link is to the node B so that 

its presence confuses the classification of B-regulation. The network is shown in the upper panel 

of Figure S11, with the bad link colored grey. In comparison, the “true” network without the bad 

link is shown in the lower panel of the same figure. The kinetic equations for the hitchhiker are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= AkAB
(1− B)

(1− B) + KAB

+ CkCB
(1− B)

(1− B) + KCB

− FB ′ k FB B
B

B + ′ K FB B

dC
dt

= AkAC
(1− C)

(1− C) + KAC

− B ′ k BC
C

C + ′ K BC   (S12) 

For a feed-forward loop, the only way to achieve perfect adaptation is for the dB/dt equation to 

establish a proportionality relationship between A* and B*. However, from Eq. (S12) we can 

only have A * kAB = FB ′kFB B
B *
′KFB B

− C * kCB
(1− B*)

(1− B*) + KCB

. There is no way to get rid of the C*-

dependence in this steady state equation. When we removed the grey link from C to B, the 

resulting network has a much higher Q (Figure S11, lower panel). 
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 One reason for this hitchhiker network to have a relatively large Q-value (besides that the 

original network is even more robust) is that this additional (grey) link, though destroyed the 

correct B-algebra, resulted in two more negative feedback loops (compare the two networks in 

Figure S11). More negative feedback loops tend to have a more negative (larger absolute value) 

Jacobian determinant J, hence a smaller adaptation error (see Eq. (S7). To see this, let us 

consider all the terms in the Jacobian determinant: 

J = α AAαBBαCC + βBAβACβCB + βCAβABβBC − α AAβCBβBC − α BBβCAβAC − αCCβABβBA . Assuming no 

positive self-loop on any of the nodes, αAA, αBB, and αCC are always negative. The first term is 

then negative. The last 5 terms in J correspond to 5 feedback loops B⇒A⇒C⇒B, C⇒A⇒B⇒C, 

C⇒B⇒C, C⇒A⇒C, A⇒B⇒A, respectively. Note that in the last three terms, the prefactors (-

αAA, -αBB, and -αCC) are all positive. Thus, for all the 5 loops, a negative feedback loop would 

contribute to a more negative J. The more the negative feedback loops are there, the larger the 

absolute value of the determinant J. It is easy to see that in any 3-node networks one cannot have 

all 5 negative loops present simultaneously. At most there can be three negative feedback loops 

without creating any positive feedback loop. With four negative feedback loops there must be 

one positive feedback loop in coexistence (which does not help to make J more negative, 

because positive feedback loops decrease the absolute value of J). In this example of hitchhiker 

network (Figure S11)), there are 3 negative feedback loops. Indeed, we found that in all the 

hitchhikers that messed up the B-algebra there are at least 3 negative feedback loops in each of 

them. These extra loops partially compensate the damage made by messing up the mechanism 

for perfect adaptation.  
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9. A special kind of coherent FFL can behavior like incoherent FFL 

Note that in the IFFLP class, there are two requirements to achieve perfect adaptation: (1) the 

two feed-forward inputs on Node C should be incoherent with opposing signs, and (2) Node B 

serves as a proportional node (the proportionality constant can depend on C). Consider the case 

in which the node B is repressed by A and activated by itself, with both reactions at saturation. 

The steady state equation for B, * ' * 0BB BBk B k A− = , would establish a proportional relationship 

between A* and B*. Combining this B-regulation with two more links, A⇒C and B⇒C, of 

opposing signs, the resulting network would satisfy the two requirements of IFFLP adaptation 

class. Note that in this network the FFL is coherent, at least from a purely topological point of 

view. That is, the cumulative signs of the two pathways, A⇒C and A⇒B⇒C, are the same. On 

the other hand, because of the special regulations on B, this coherent FFL would behave exactly 

like an incoherent FFL, i.e. two pathways originating from the input node exerting opposing 

regulations on the output node. This particular B-regulation, which leads to this counter-intuitive 

behavior, is not stable by itself. So this simple network with coherent FFL can not perform 

adaptation with the IFFLP mechanism. However, the steady state can be stabilized with the help 

of a negative FBL. One example of such a network is shown in Figure S12 (left panel). In this 

network, if the regulation on B from C is linear and others regulations on B are saturated, the 

steady state equation for B, * ' * ' * * / ' 0BB BB CB CBk B k A k C B K− − = , also establishes a 

proportional relationship between A* and B*: ' * ( ' * / ' ) *BB BB CB CBk A k k C K B= − . Thus, if the 

steady state is stable under some parameter sets, the network shown in Figure S12 (left panel) 

can in principle perform perfect adaptation with the IFFLP mechanism. We found that this 

network has a reasonable Q-value (Q=11).  However, this network can also be viewed as a 

“hitchhiker” (see the previous section) of a more robust network of NFBLB class shown on the 
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right in Figure S12. The “bad” link (that decreases the Q-value) would be the negative link from 

A to B, which, in this case, does not mess up the B-algebra of the original NFBLB network. 

Indeed, we found that in about half of cases in which the network on the left in Figure S12 

“adapts” (i.e. being mapped to the functional region under certain parameter set) the αBB is close 

to zero, implying the NFBLB mechanism. For the rest of the cases, some of them seem to have 

adopted the IFFLP mechanism for adaptation. In any case, although it is not so robust, it is 

interesting to note that a coherent FFL, when dressed with a self-loop, can function like an 

incoherent FFL. 

 

10. Implications of using Michaelis-Menten kinetics in our model 

We used the Michaelis-Menten kinetics to model the rate equations in an enzymatic network.  

We examine here in detail whether certain approximations in MM kinetics will affect our 

conclusions. The quasi-steady-state approximation in MM kinetics assumes that the 

concentration of the enzyme-substrate complex is in equilibrium and does not change (or 

changes very slowly) with time, that is, d[ES]/dt=0. Since adaptation is a steady-state property, 

this condition is always satisfied in our analyses. Another subtlety in the MM rate equation, 

k[E][S]/([S]+K), is that [E] is the concentration of the total enzymes while [S] is the 

concentration of the free (unbounded) substrate. It is often assumed that the substrate is in large 

excess compared with the enzyme so that [S] can be treated as the concentration of the total 

substrates. In an enzymatic network, an enzyme can also be a substrate and [ET]<<[ST] may not 

always hold. Furthermore, one may argue that instead of the total enzyme concentration, the 

circuit output should be the free enzyme concentration, which is a more relevant quantity to drive 

the down stream reactions. In addition, one may wonder if by introducing cooperativity in the 
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MM rate equations there would be different adaptation classes emerging. In the following two 

sections we address these issues and show that our main conclusions about the adaptation classes 

and their mechanisms remain unchanged.  

 

10.1 Mass reaction equations and total Quasi-Steady-State Approximation (tQSSA) 

In this section, we use the mass reaction equations to study three representative adaptation 

networks. In several recent papers, an approximation scheme (tQSSA) to the mass reaction 

equations was developed and used to model enzymatic reactions (Tzafriri 2003, Gomez-Uribe 

2007, Ciliberto 2007). The method of tQSSA is considered to be applicable to a wider class of 

situations than the MM approximation. In tQSSA, the complexes are still assumed to reach 

equilibrium very fast (quasi-steady-state). But instead of using the concentration of free substrate 

as the dynamic variable, one focuses on the total substrate concentration, treating both the 

enzyme and the substrate on a more equal footing. In the following analyses of the adaptation 

networks, we first present analytic results using the tQSSA formulation to show under what 

conditions the network can achieve perfect adaptation. We then present numerical simulation 

results of the mass reaction equations to demonstrate the ability of the network to adapt.  

 

9.1.1 NFBLB network 

We use the simplest NFBLB motif (Fig. S14A, left) as an example to show in detail how 

tQSSA leads to the same adaptation mechanism as with the MM equations. 

The mass reaction equations for this network are: 
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d[IA]
dt

= kIA1[I][A] − (kIA−1 + kIA 2)[IA]

d[BP AP ]
dt

= kBP AP 1[BP ][AP ]− (kBP AP −1 + kBP AP 2)[BP AP ]

d[AP B]
dt

= kAP B1[AP ][B] − (kAP B−1 + kAP B 2)[AP B]

d[E0BP ]
dt

= kE0BP 1[E0][BP ] − (kE0BP −1 + kE0BP 2)[E0BP ]

d[APT ]
dt

= kIA 2[IA] − kBP AP 2[BP AP ]

d[BPT ]
dt

= kAP B 2[APB] − kE0BP 2[E0BP ]

[APT ] = [AP ] + [BP AP ] + [APB]
[BPT ] = [BP ]+ [E0BP ] + [BP AP ]

    

(S13)

 

where Ap (Bp) and A (B) denote the active and the inactive form of the node A (B), respectively. 

With the assumption of quasi steady state for the complexes, and the assumption that the 

square of the complex concentration is much smaller than the product of the free enzyme and the 

free substrate concentrations ([ES]2<<[E][S] for all the reactions), we get: 

kIA1[I][A]− (kIA−1 + kIA 2)[IA] = 0
kBP AP 1[BP ][AP ] − (kBP AP −1 + kBP AP 2)[BP AP ] = 0

kAP B1[AP ][B]− (kAP B−1 + kAP B 2)[AP B] = 0

kE0BP 1[E0][BP ] − (kE0BP −1 + kE0BP 2)[E0BP ] = 0

 

d[APT ]
dt

= kIA 2[IA] − kBP AP 2[BP AP ]

= kIA 2
[IT ]([A]+ [IA])

KIA + [IT ] + [A]+ [IA]
− kBP AP 2

([BP ] + [BP AP ])([AP ] + [BP AP ])
KBP AP

+ [BP ] + [BP AP ] + [AP ]+ [BP AP ]

d[BPT ]
dt

= kAP B 2[AP B]− kE0BP 2[E0BP ]

= kAP B 2
([AP ] + [AP B])([B] + [AP B])

KAP B + [AP ] + [APB] + [B]+ [AP B]
− kE0BP 2

[E0T ]([BP ]+ [E0BP ])
KE0BP

+ [E0T ]+ [BP ]+ [E0BP ]

 

(S14)

 

We can see that the difference between the new rate equations (Eq. S14) and the Michaelis-

Menten equations is that in Eq. (S14) the enzymatic reaction terms have the form 
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[E’][S’]/(Km+[E’]+[S’]), where [E’] and [S’] are the total enzyme and the total substrate that is 

involved in the particular reaction, respectively. Thus, the competition between different 

substrates and/or different enzymes is included in this formulism. Also note that [ET]<<[ST] is no 

longer an implicit assumption for the new equations.  

In the model of the Michaelis-Menten equations, the condition to have perfect adaptation is 

to saturate the two reactions on the node B. Similarly, in this model, the condition for the total 

enzyme concentration [Ap]+[ApB] to be a constant is to saturate the two reactions: 

[B] + [APB] >> KAP B and [B] + [AP B] >> [AP ] + [AP B]

[BP ] + [E0BP ] >> KE0 BP
and [BP ] + [E0BP ] >> E0T

    (S15) 

We found that it is still necessary to have a larger total substrate concentration than the total 

enzyme concentration. But this constraint is only for the two key regulations on the node B. By 

applying the condition of Eq. (S15), we have: 

d[BPT ]
dt

= kAP B 2([AP ] + [AP B]) − kE0BP 2[E0T ]     (S16) 

which implies a constant steady state for [AP]+[APB]. Therefore, as far as the total enzyme 

concentration is concerned, the adaptation mechanism and condition is the same as for the MM 

equations. 

 

10.1.2 Adaptation in the free form of the enzyme 

If one wants to use the free form [AP] as the output and require it to be a constant, we should 

satisfy the condition that [AP] and [AP]+[APB] are similar, or [AP]>>[APB], which would then 

imply [AP] ≈ [AP]+[APB] = constant. In other words, the measurement of the output Ap made by 

the buffer node B should not disturb the output itself significantly. With the network topology 
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shown on the left of Fig S14A, the output node A directly acts on the buffer node B. For the free 

form [AP], we have the following formulae: 

 
[AP ]

[AP B]
=

KAP B

[B]
         (S17) 

Since perfect adaptation requires this reaction to be saturated, normally we have [B]>> KApB, 

implying [APB]>>[AP]. This means that most of the active form AP is bound with B, leaving only 

very few free Ap for other reactions (e.g. serving as the output signal). If we want to have more 

free form in the output, an additional intermediate node between A and B can be introduced, 

which we denote as node D (Fig. S14A, right). The node D here serves as an information relay of 

the output signal but with a minimal disturbance to the output itself, which can be achieved by a 

low concentration of D compared with Ap or by making the reaction from A to D linear. The 

perfect adaption condition is still on the node B, i.e. the reactions from D to B and from the basal 

enzyme E0 to B are saturated. Mathematically, with the additional node D, the mass reaction 

equations with the tQSSA are: 

kIA1[I][A]− (kIA−1 + kIA 2)[IA] = 0
kBP AP 1[BP ][AP ] − (kBP AP −1 + kBP AP 2)[BP AP ] = 0

kDP B1[DP ][B] − (kDP B−1 + kDP B 2)[DP B] = 0

kE0BP 1[E0][BP ] − (kE0BP −1 + kE0BP 2)[E0BP ] = 0

kAP D1[AP ][D]− (kAP D−1 + kAP D 2)[AP D] = 0

kE1DP 1[E1][DP ] − (kE1DP −1 + kE1DP 2)[E1DP ] = 0

kE1DP 1[E1][DP B]− (kE1DP −1 + kE1DP 2)[E1DP B] = 0

kDP B1[E1DP ][B] − (kDP B−1 + kDP B 2)[E1DP B] = 0

[APT ] = [AP ] + [BP AP ] + [AP D]
[BPT ] = [BP ]+ [E0BP ] + [BP AP ]
[DPT ] = [DP ] + [E1DP ] + [DP B] + [E1DP B]
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d[APT ]
dt

= kIA 2[IA] − kBP AP 2[BP AP ]

= kIA 2
[IT ]([A] + [IA])

KIA + [IT ] + [A] + [IA]
− kBP AP 2

([BP ]+ [BP AP ])([AP ]+ [BP AP ])
KBP AP

+ [BP ]+ [BP AP ]+ [AP ] + [BP AP ]

d[BPT ]
dt

= kDP B 2([DP B]+ [E1DP B]) − kE0BP 2[E0BP ]

= kDP B 2
([DP ]+ [DP B] + [E1DP ] + [E1DP B])([B] + [DP B] + [E1DP B])

KDP B + [DP ]+ [DP B] + [E1DP ] + [E1DP B] + [B] + [DP B]+ [E1DP B]

−kE0BP 2
[E0T ]([BP ] + [E0BP ])

KE0BP
+ [E0T ] + [BP ] + [E0BP ]

= kDP B 2
[DPT ]([BT ] − [BPT ])

KDP B + [DPT ] + [BT ] − [BPT ]
− kE0BP 2

[E0T ]([BP ]+ [E0BP ])
KE0BP

+ [E0T ]+ [BP ]+ [E0BP ]

d[DPT ]
dt

= kAP D2[AP D] − kE1DP 2([E1DP ] + [E1DP B])

= kAP D2
([AP ] + [AP D])([D]+ [AP D])

KAP D + [AP ] + [AP D] + [D] + [AP D]

−kE1DP 2
[E1T ]([DP ] + [E1DP ]+ [DP B] + [E1DP B]])

KE1DP
+ [E1T ] + [DP ]+ [E1DP ] + [DP B] + [E1DP B]

= kAP D2
([AP ] + [AP D])([DT ] − [DPT ])

KAP D + [AP ] + [AP D] + [DT ] − [DPT ]
− kE1DP 2

[E1T ][DPT ]
KE1DP

+ [E1T ]+ [DPT ]

(S18) 

where we assumed that E1 works on both free DP and the complex form DPB. Saturating the two 

reactions on the node B (see the d[BPT]/dt equation) gives [DPT] = constant. From the equation 

d[DPT]/dt = 0, we see that [AP]+ [APD] is a function of [DPT], implying that [AP]+ [APD] will also 

a constant when [DPT] = constant. Then, with [AP] >> [APD] (by either making [DT]<<[AT] or 

making the A to D reaction linear), we can approach perfect adaptation in the free form 

concentration [AP] of the enzyme. 

10.1.3 Simulation of the full mass reaction equations 

 In Fig. S13A (lower panels) we show the simulation results of a full set of mass reaction 

kinetic equations (no quasi-steady-state approximations), in comparison with the numerical 

simulations of MM equations.  
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The IFFLP motif 

Using the tQSSA, for the IFFLP adaptation network (Fig. S13B, left) we have the following 

equations for node B and node C: 

d[BPT ]
dt

= kAP B 2
([AP ]+ [AP B])([B]+ [AP B])

KAP B + [AP ] + [AP B] + [B]+ [AP B]

−kE0BP 2
E0T ([BP ] + [E0BP ])

KE0BP
+ E0T + [BP ] + [E0BP ]

d[CPT ]
dt

= kAPC 2
([AP ]+ [APC])([C] + [APC])

KAPC + [AP ] + [APC]+ [C] + [APC]

−kBPCP 2
([BP ]+ [BPCP ])([CP ]+ [BPCP ])

KBPCP
+ [BP ] + [BPCP ] + [CP ] + [BPCP ]

    (S19) 

Suppose the first term in d[BPT]/dt equation is saturated and the second linear, we have: 

d[BPT ]
dt

= kAP B2 ([AP ] + [AP B]) − kE0 BP 2
E0T ([BP ] + [E0BP ])

KE0 BP
+ E0T

d[CPT ]
dt

= kAPC 2
([AP ] + [APC])([C] + [APC])

KAPC + ([AP ] + [APC]) + ([C] + [APC])

−kBPCP 2
([BP ] + [BPCP ])([CP ] + [BPCP ])

KBPCP
+ ([BP ] + [BPCP ]) + ([CP ] + [BPCP ])

   (S20) 

In the Michaelis-Menten formulation, the steady-state condition for the two equations will 

guarantee perfect adaptation. However, here the proportional relationship, [AP]+[APB] ∝ 

[BP]+[E0BP], established by d[BPT]/dt=0 equation does not always lead to the elimination of Ap 

and Bp in the d[CPT]/dt=0 equation, a condition required for perfect adaptation. We see that to 

achieve robust perfect adaptation in Eq. (S20) we should have (1) the concentration of the free 

form (enzymes and substrates) much larger than that of the complex forms, and (2) the substrate 

concentration much larger than its enzyme concentration in both terms of the d[CPT]/dt equation. 

The condition (2) is the implicit assumption in MM equations. For condition (1), it can be easily 
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achieved for all enzymes and substrates by either adjust their relative concentrations or making 

the enzyme working in the linear region, except for the reaction AP → B which must work in the 

saturated region due to the perfect adaptation constraint implying [APB] > [AP]. This problem can 

be resolved by introducing an additional node D between A and B as indicated in Fig. S14B, 

where E1 works on both the free form [DP] and the complex form [DPB]. The network can 

achieve adaptation with the same mechanism as found with MM equations.  

 

10.1.4 NFBLB with positive self loop 

For the NFBLB network with an auto-positive feedback loop on B (Fig. S13C), the tQSSA 

gives the following equation for node B: 

d[BPT ]
dt

= kBP B 2
([BP ]+ [AP BP ]+ [BPB] + [APBP B])([B]+ [BPB] + [AP BP B])

KBP B + [BP ] + [AP BP ] + [BP B] + [APBP B]+ [B]+ [BP B]+ [AP BP B]

−kAP BP 2
([AP ] + [APBP ] + [APBP B])([BP ] + [AP BP ] + [BP B] + [AP BP B])

KAP BP
+ [AP ]+ [AP BP ] + [AP BP B] + [BP ] + [AP BP ] + [BP B]+ [AP BPB]

(S21) 

where we assumed that AP works on both the free form BP and the complex form BPB. If the first 

term in Eq. (S21) is in the saturated region and the second one in the linear region, we have: 

d[BPT ]
dt

= [BPT ](kBP B 2 − kAP BP 2
[AP ]+ [AP BP ] + [AP BP B]

KAP BP
+ [AP ] + [AP BP ] + [APBP B]

)  (S22) 

Thus, the total enzyme [ApT] adapts with the same mechanism found with the MM equations. If 

one requires the free enzyme [Ap] to adapt, it can be easily achieved in this case since AP-|BP 

works in the linear region, the complex concentration can easily be much less than the free form, 

giving [AP] ≈ [AP]+[APBP]+ [APBPB] = [ApT].  
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10.2 Cooperative regulations 

We have also studies all of the 3-node enzymatic circuits with cooperative regulations. 

Specifically, we replaced the usual MM kinetics E
S

S + K
 with E

Sn

Sn + K n  in all equations, and 

let the Hill coefficient n to be a variable of the range 1 to 4. Note that just like the other 

parameters kcat and KM, n can be different for different reactions in the circuit. We sampled 

10,000 parameter sets for each network topology. In general, there is a decrease in robustness 

(Q), presumably due to the increased number of circuit parameters.  

Our results can be summarized as follows. (1) There are no new classes of adaptation 

compared with the simple MM kinetics. (2) The NFBLB without the auto-positive loop is the 

most robust class of adaptation. The most robust topologies are those with multiple negative 

feedback loops. This is because that for this class of topologies the adaptation is achieved via the 

saturation of enzymes by substrates at the key node (B). Higher Hill coefficients can help to 

achieve the saturation condition ( / )nS K >>1. However, higher Hill coefficients do not result in 

any new adaptation mechanism. In particular, it is still necessary to have a buffer node (B) acting 

as an integrator in this class. (3) The IFFLP class is less robust. This is because that one 

condition for adaptation in this class requires a linear dependence of the rate on the substrate 

concentration in order for the node B to be a proportioner. This linear dependence can only be 

achieved with Hill coefficient n=1. This fact can be easily seen from the equation for Node B 

(compare with Eq. (5) in the main text): dB
dt

= AkAB

(1− B)nAB

(1− B)nAB + K AB
nAB

− FBk 'FB B

B
nFBB

B
nFBB + K 'FB B

nFBB
. A 

proportional relationship between Node A and Node B can only be established when nFB B = 1  

(and with the first term saturated and the second in the linear region).  Thus, in this case any Hill 
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coefficients higher than 1 would hinder the adaptation. This could be a potential reason why the 

IFFLP topologies seem to appear much less often in natural adaptation circuits. (4) For a similar 

reason, the topologies in NFBLB class with an auto-positive loop on Node B are less robust. 

There we also need a linear dependence of rate on substrate which can only be realized with n=1. 

The equation for Node B is (compare with Eq. (S2)): 

  

dB
dt

= BkBB

(1− B)nBB

(1− B)nBB + KBB
nBB

− Ck 'CB

BnCB

BnCB + K 'CB
nCB

.  Perfect adaptation is possible only if nCB = 1, 

so that the B dependence in the first term cancels out that on the second term when the first term 

is saturated and the second in the linear region. 

 

11. Effects of different sampling sizes and of precision and sensitivity thresholds 

Our numerical results presented in the main text were obtained by sampling 10,000 sets of 

parameters for each network architecture. To test whether our main conclusions depend on 

sampling size we sampled 1,000 sets of parameters for each network. The Q-values from the 

10,000 samples and the 1,000 samples are highly correlated (correlation coefficient 0.86) (Fig. 

S14A). We found that sampling with only 1,000 sets of parameters can identify the most robust 

networks, but will miss some of the simplest NFBLB motifs. With 10,000 samples, most of the 

adaptation networks are identified, from which we can extract the design rules governing all of 

them. 

In the main text, we define a circuit to be functional if its sensitivity > 1 and precision > 10. 

If we change the sensitivity cutoff to 0.5 and the precision cutoff to 5 (i.e. the circuit is functional 

if sensitivity > 0.5 and precision > 5), we get 1341 networks each of which has more than 10 sets 

of functional parameters (with 10,000 sampling size). The correlation coefficient between this 
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data set and the previous data set is 0.94 (Fig. S14B). More importantly, all the 1341 networks 

contain at least one negative feedback loop or one incoherent feed-forward loop. 

 

12. Design table for adaptation networks 

The discussion about the relationship of the feedback loops with the Jacobian determinant, 

presented in the last paragraph of the section “Violations of the required B-algebra compromise 

the network robustness”, provides an explanation for our numerical observation that certain 

additional negative feedback loops can improve the network’s robustness. We found that the 

improvements are most obvious if these additional negative loops go through the control node B 

in ways that do not contradict any adaptation mechanism. Note that the negative feedback loop 

between the nodes A and C (which does not go through the node B), does not contribute to the 

Jacobian determinant J in the two adaptation classes. This loop appears in J together with the 

diagonal element αBB=0 as a product term, αBBβACβCA (Eq. (S9)). For the NFBLB class, we 

always have αBB=0 so that this term is always zero. For the IFFLP class, αBBβAC = βABβBC  which 

implies αBBβACβCA= βABβBCβCA, so that this term cancels out another term in J: βABβBCβCA -

αBBβACβCA=0 (see Eq. (S9)). This means that in IFFLP class, creating a feedback loop A⇒C⇒A 

(positive or negative) would always simultaneously create a feedback loop A⇒B⇒C⇒A which 

exactly cancels out any effects of the A⇒C⇒A loop on the determinant J.  

In Figure S15, we provide a full design table of adaptation networks, constructed by adding to 

the core adaptation topologies more and more negative feedback loops that (1) go through the 

node B, (2) do not violate the adaptation mechanism (the B-algebra), and (3) do not result in any 

positive feedback loops. We see that for most cases additions of these loops increased the 

robustness (green arrows). For the few cases in which the robustness is decreased (red arrows), 
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the additional loops increased the number of network parameters, which may result in a drop of 

Q-value. When the number of network parameters is increased, the dimensions of parameter 

space increase. This tends to decrease the Q-value. An intuitive explanation for this is that if each 

parameter has 50% chance of being functional, the total fraction of functional parameter sets for 

a network with n parameters is then 0.5n, which decreases quickly with n. Note that even some 

additional loops increased the number of parameters (e.g. the network (I) or (II) being changed to 

network (IV) in Figure S15), the robustness still increased. 

We provide below a detailed analysis for some example networks. These networks are 

marked with a number next to it in Figure S15. 
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(I) Key topological features: Single negative feedback loop. Node B is regulated only by A. Output node C is 

only regulated by A, hence A*=constant implies C*=constant. 

Parameter constraints: The two reactions acting on Node B are saturated. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

+ BkBA
(1− A)

(1− A) + KBA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= EB kEB B
(1− B)

(1− B) + KEB B

− A ′ k AB
B

B + ′ K AB

dC
dt

= EC kECC
(1− C)

(1− C) + KECC

− A ′ k AC
C

C + ′ K AC

 

If the two reactions on Node B are saturated, A = EB kEB B / ′ k AB
. From the third equation we see that the steady 

state level of C is only dependent on the concentration of A. So at steady state C* is also a constant 

independent of the input. 

 

(II) Key topological features: Single negative feedback loop. Node B is regulated only by the output node C. 

Parameter constraints: The two reactions acting on B are saturated. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

+ BkBA
(1− A)

(1− A) + KBA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= CkCB
(1− B)

(1− B) + KCB

− FB ′ k FB B
B

B + ′ K FB B

dC
dt

= EC kECC
(1− C)

(1− C) + KECC

− A ′ k AC
C

C + ′ K AC

 

If the two reactions on B are saturated, C = FB ′ k FB B /kCB
. 

 

 

 

 

 

 

See Figure S14 for the full design table
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(III) Key topological features: Single negative feedback loop. Node B is regulated only by the output node C. 

Parameter constraints: The two reactions acting on B are saturated. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= CkCB
(1− B)

(1− B) + KCB

− FB ′ k FB B
B

B + ′ K FB B

dC
dt

= AkAC
(1− C)

(1− C) + KAC

− B ′ k BC
C

C + ′ K BC

 

If the two reactions on B are saturated, C* = FB ′kFB B / kCB = constant .  

 

 (IV) Key topological features: Two negative feedback loops. Node B is regulated by both A and C.  

Parameter constraints: The two reactions acting on B are saturated. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

+ BkBA
(1− A)

(1− A) + KBA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= CkCB
(1− B)

(1− B) + KCB

− A ′ k AB
B

B + ′ K AB

dC
dt

= EC kECC
(1− C)

(1− C) + KECC

− A ′ k AC
C

C + ′ K AC

 

If the two reactions on B are saturated, A * ′kAB = C * kCB . Together with the steady state equation for C, we 

have 

A * ′kAB − C * kCB = 0

ECkEC C
(1− C*)

(1− C*) + KEC C

− A ′kAC
C *

C * + ′KAC

= 0

⎧

⎨
⎪

⎩
⎪
⎪

 

These two equations give unique solutions of A* and C*, independent of the input.  

 

 

 

 

See Figure S14 for the full design table
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(V) Key topological features: Two negative feedback loops. Node B is regulated by C, but feeds back to both 

Node A and Node C.  

Parameter constraints: The two regulations acting on B are saturated. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= CkCB
(1− B)

(1− B) + KCB

− FB ′ k FB B
B

B + ′ K FC B

dC
dt

= AkAC
(1− C)

(1− C) + KAC

− B ′ k BC
C

C + ′ K BC

 

If the two reactions on B are saturated, C* = FB ′kFB B / kCB = constant .  

 

(VI) Key topological features: Single negative feedback loop plus a positive self-loop on B. Apart from the B 

self-regulation, the other regulations to B must be negative. 

Parameter constraints: The B self-regulation is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= BkBB
(1− B)

(1− B) + KBB

− C ′ k CB
B

B + ′ K CB

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC

 

If the first reaction on Node B is in the linear region and the second saturated, B *(kBB − C * ′kCB / ′KCB ) = 0 . B* 

is not 0, C* = kBB ′KCB / ′kCB = constant . 

 

 

 

 

 

 

See Figure S14 for the full design table
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(VII) Key topological features: Single negative feedback loop plus a positive self-loop on B. Apart from the 

B self-regulation, the other regulations to B must be negative. 

Parameter constraints: The B self-regulation is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= BkBB
(1− B)

(1− B) + KBB

− C ′ k CB
B

B + ′ K CB

dC
dt

= EC kECC
(1− C)

(1− C) + KECC

− A ′ k AC
C

C + ′ K AC

 

If the first reaction on node B is linear and the second reaction saturated, B * (kBB − C * ′kCB / ′KCB ) = 0 . B* is 

not 0, C* = kBB ′KCB / ′kCB = constant . 

 

(VIII) Key topological features: Two negative feedback loops plus a positive self-loop on B. Apart from the 

B self-regulation, the other regulations on B must be negative. 

Parameter constraints: The B self-regulation is saturated. The other regulations on B are linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

+ BkBA
(1− A)

(1− A) + KBA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= BkBB
(1− B)

(1− B) + KBB

− A ′ k AB
B

B + ′ K AB

− C ′ k CB
B

B + ′ K CB

dC
dt

= AkAC
(1− C)

(1− C) + KAC

− FC ′ k FCC
C

C + ′ K FCC

 

If the first reaction on node B is linear, and the second and the third reactions are saturated, 

B * (kBB − A * ′kAB / ′KAB − C * ′kCB / ′KCB ) = 0 . B* is not 0. C* can be fixed together with the steady state 

equation for dC/dt:  

kBB − A * ′kAB / ′KAB − C * ′kCB / ′KCB = 0

A * kAC
(1 − C*)

(1 − C*) + KAC

− FC ′kFC C
C *

C * + ′KFC C

⎧

⎨
⎪

⎩
⎪
⎪

 

 

See Figure S14 for the full design table



 34

 

 

(IX) Key topological feature: Two negative feedback loops plus a positive self-loop on B. Apart from the B 

self-regulation, the other regulations on B must be negative. 

Parameter constraints: The B self-regulation is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= BkBB
(1− B)

(1− B) + KBB

− C ′ k CB
B

B + ′ K CB

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC

 

If the first reaction on Node B is linear and the second saturated, B *(kBB − C * ′kCB / ′KCB ) = 0 . B* is not 0, 

C* = kBB ′KCB / ′kCB = constant . 

 

(X) Key topological features: Incoherent feed-forward loop. The regulation from A to C has a different sign 

as the regulation from B to C. The regulation from A to B is positive. 

Parameter constraints: The regulation from A to B is saturated. The basal regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= AkAB
(1− B)

(1− B) + KAB

− FB ′ k FB B
B

B + ′ K FB B

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC  

If the first (activation) reaction on Node B is saturated and the other linear, A* = B * FB ′kFB B / kAB / ′KFB B . 

Substituting it into the third equation at steady state, we have 

 kBC
(1− C*)

(1− C*) + KBC

−
FB ′kFB B

kAB ′KFB B

′kAC
C *

C * + ′KAC

= 0  

C* is a constant independent of the input. 

 

  

See Figure S14 for the full design table



 35

 

 

(XI) Key topological features: Incoherent feed-forward loop coupled with one negative feedback loop. The 

regulation from A to C has a different sign as the regulation from B to C. The regulation from A to B is positive. 

Parameter constraints: The regulation from A to B is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= AkAB
(1− B)

(1− B) + KAB

− FB ′ k FB B
B

B + ′ K FB B

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC  

If the first (activation) reaction on B is saturated and the other linear, A* = B * FB ′kFB B / kAB / ′KFB B . Substituting it 

into the third equation at steady state, we have 

 kBC
(1− C*)

(1− C*) + KBC

−
FB ′kFB B

kAB ′KFB B

′kAC
C *

C * + ′KAC

= 0   where C* is a constant independent of the input.  

 

(XII) Key topological features: Incoherent feed-forward loop coupled with one negative feedback loop. The 

regulation from A to C has a different sign as the regulation from B to C. The regulation from A to B is positive. 

Parameter constraints: The regulation from A to B is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− FA ′ k FA A
A

A + ′ K FA A

dB
dt

= AkAB
(1− B)

(1− B) + KAB

− C ′ k CB
B

B + ′ K CB

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC  

If the first (activation) reaction on B is saturated and the other linear, A* = B *C * ′kCB / kAB / ′KCB . Substituting it 

into the third equation at steady state, we have 

 kBC
(1 − C*)

(1 − C*) + KBC

−
C * ′kCB

kAB ′KCB

′kAC
C *

C * + ′KAC

= 0  where C* is a constant independent of input. 

 

See Figure S14 for the full design table
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(XIII) Key topological features: Incoherent feed-forward loop coupled with three negative feedback loops. 

The regulation from A to C has a different sign as the regulation from B to C. The regulation from A to B is 

positive. 

Parameter constraints: The regulation from A to B is saturated. The other regulation on B is linear. 

The equations are: 

dA
dt

= IkIA
(1− A)

(1− A) + KIA

− B ′ k BA
A

A + ′ K BA

dB
dt

= AkAB
(1− B)

(1− B) + KAB

− C ′ k CB
B

B + ′ K CB

dC
dt

= BkBC
(1− C)

(1− C) + KBC

− A ′ k AC
C

C + ′ K AC  

If the first (activation) reaction on B is saturated and the other linear, A* = B *C * ′kCB / kAB / ′KCB . 

Substituting it into the third equation at steady state, we have 

 kBC
(1 − C*)

(1 − C*) + KBC

−
C * ′kCB

kAB ′KCB

′kAC
C *

C * + ′KAC

= 0  

C* is a constant independent of the input. 

 

 

See Figure S14 for the full design table
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Supplemental Figure Legends: 

Figure S1. The probability plot for all the 81 two-node networks. The networks are composed of 

the input node A and the output node C. None of them are capable of adaptation.  

Figure S2. The probability plot for all the 36 networks with 3 nodes and 2 links. None of the 3-

node networks with less than 3 links are capable of adaptation.  

Figure S3. The probability plots for each of the 3-node 3-link networks that contain either one 

feedback or feed-forward loop between different nodes. 

Figure S4. Adaptation networks studied in our enzymatic model are also capable of adaptation 

under inputs of the multiple up/down steps. Two examples are shown here: a single negative 

feedback loop (upper panel) and a single incoherent feed-forward loop (lower panel). 

Figure S5. Selection criterion for excluding circuits with damped oscillations. 

Figure S6. Phase diagram and nullclines for a single negative feedback loop with (upper panel) 

and without (lower panel) the buffer node. The solid lines are nullclines corresponding to the 

initial input and the dashed to the changed input.  

Figure S7. Motif analysis of 395 robust adaptation networks. Significance is shown for each 

feedback of feed-forward loops as motifs. 

Figure S8. Phase diagrams and nullclines of a network with one negative feedback loop and one 

positive self-loop on B. The B-nullcline (dB/dt=0) is drawn in black line and C-nullcline in red 

(solid red for the initial input and dashed red for the changed input). The change of KBB is from 1 

to 0.02; 'CBK  from 1 to 10; kBC from 1 to 100; and 'ACk  from 1 to 100.  

Figure S9. The B-regulation and the corresponding B-algebra in NFBLB networks (two left 

columns). Shown in the next column is the number of networks among the 395 robust adaptation 

networks that implement the regulation. An example network in each case is shown on the right. 
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Figure S10. The B-regulation and the corresponding B-algebra in IFFLP networks (two left 

columns). Shown in the next column is the number of networks among the 395 robust adaptation 

networks that implement the regulation. An example network in each case is shown on the right. 

Figure S11. An example network (upper panel) that cannot achieve perfect adaptation but 

appears to be robust (large Q-value). The network contains an incoherent feed-forward loop but 

its regulation on B does not belong to any of the B-regulations of IFFLP class (Figure S9). When 

the grey link is removed, the resulting network (lower panel) is more robust and its B-regulation 

is in the list of the IFFLP class shown in Figure S9. 

Figure S12. A network (left) with a coherent FFL. With a self-loop on B, this coherent FFL can 

function like an incoherent FFL. A negative FBL (between B and C) is necessary to make the 

relevant steady state stable. Removing the link from A and B, the resulting network (right) is 

more robust.  

Figure S13. Mass action reaction models for three typical adaptation networks. A) Network with 

negative feedback loop. B) Network with incoherent feed-forward loop. C) Network with 

negative feedback loop and a positive self-regulation on node B. The left are the Michaelis-

Menten (MM) models used in the main text, the middle are the mass action reaction models used 

for simulation here. Certain nodes in the MM model are expanded in the mass action reaction 

models by adding an additional node D (pink region) to avoid titration by its substrate. The right 

side figures are simulation results using mass action reaction models. All the key regulations are 

colored with orange (saturated) or blue (linear). 

Figure S14. Comparison of robustness Q with different sample size and cutoff. A) Comparison 

of the robustness Q when using 1,000 and 10,000 samples of parameter sets. B) Comparison of 

the robustness Q when using different cutoffs for precision and sensitivity. 
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Figure S15. The design table of 3-node enzymatic networks for perfect adaptation. Starting with 

simple adaptation networks, additional negative feedback loops that (1) go through B, (2) do not 

violate the adaptation mechanism, and (3) do not result in any positive feedback loops are added, 

until no more such loops can be added. The Q-value was obtained from sampling 10,000 

parameter sets, and the number in parenthesis is the Q-value from sampling 100,000 parameter 

sets. Green arrows indicate an increase in Q with additional loops, red arrows indicate a drop in 

Q, and black arrows indicate no detected changes in Q. In all the cases of decreasing Q the 

number of parameters is increased with the additional loop. 
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Figure S3
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Figure S4
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Figure S5 
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Figure S6 
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Figure S8 
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Figure S9
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Figure S13 
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