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Abstract

Living cells respond to their environment using networks of

signaling molecules that act as sensors, information

processors, and actuators. These signaling systems are highly

modular at both the molecular and network scales, and much

evidence suggests that evolution has harnessed this modularity

to rewire and generate new physiological behaviors.

Conversely, we are now finding that, following nature’s

example, signaling modules can be recombined to form

synthetic tools for monitoring, interrogating, and controlling the

behavior of cells. Here we highlight recent progress in the

modular design of synthetic receptors, optogenetic switches,

and phospho-regulated proteins and circuits, and discuss the

expanding role of combinatorial design in the engineering of

cellular signaling proteins and networks.
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Introduction: why design and engineer
signaling proteins?
A major goal of modern cell biology is to understand how

molecular signaling circuits enable cells to sense their

environment and mount an appropriate response. This

goal is currently being addressed using two distinct but

complementary approaches: research aimed at the dis-

section, mapping, and analysis of naturally occurring

systems, and efforts to engineer new cell signaling path-

ways. As the traditional analytic approach has revealed

the wide diversity of mechanisms and molecular com-

ponents that underlie cellular communication, a set of

common mechanistic themes in signaling have emerged

[1,2]. The synthetic approach provides a complementary

method for rigorously testing that conceptual framework
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and for elucidating the core design principles that are

used to achieve fundamental classes of response beha-

viors. By constructing signaling systems, one can pre-

cisely alter them in a highly controlled way, and map the

landscape of physiological genotype/phenotype rela-

tionships. By using orthogonal components, one can

ask questions free from the pleiotropic functional en-

tanglement of natural proteins. Thus, these forward

engineering approaches may help us better predict

how changes wrought by evolution, disease, or therapy

will impact cellular behaviors. In addition, the ability to

engineer cells with customized signaling responses

could also be useful for therapeutic applications. There

have been remarkable recent advances in using engi-

neered cells for cancer immunotherapy, treatment of

autoimmunity, and regenerative medicine [3], and im-

proving our ability to precisely design therapeutic cells

is of growing interest.

Driven by the twin motivations of understanding natural

signaling networks and building cells with useful beha-

viors, researchers are developing methods for engineering

diverse cellular signaling molecules and systems [4,5].

Recent efforts in the synthetic biology of signaling are

distinct from the transcriptional engineering that domi-

nated early synthetic biology, which largely focused on

using gene expression modules to control protein abun-

dance. In cell signaling, protein based receptors and

posttranslational protein regulation play a principal role

in mediating the cell’s rapid response to changes in its

environment. Engineering such fast and spatially coordi-

nated cell signaling behaviors intrinsically focuses on

engineering proteins.

Signaling proteins are highly modular in structure, often

comprising distinct functional domains — some that

catalyze particular information processing reactions

(e.g. kinases and phosphatases) and others that mediate

regulation or localization. One emerging strategy for

engineering posttranslational regulation thus centers on

generating novel combinations of modular domains and

regulatory elements, which can result in rewiring new

connections in the context of a larger cellular circuit. In

this review, we will consider three areas of signaling

protein design in which this modular approach has been

highly successful and has shown recent progress: engi-

neered synthetic cell-surface receptors, optogenetic sen-

sors that allow light control of signaling pathways, and the

engineering of synthetic phosphorylation-regulated sig-

naling proteins.
www.sciencedirect.com



Modular engineering of signaling proteins and networks Gordley, Bugaj and Lim 107
Hierarchical logic of signaling proteins and
networks
To communicate and respond to its environment, any cell

must have at least three components: sensors or receptors

that receive input, a downstream layer that processes

these inputs, and physiological outputs that change in

response to this information (e.g. changes in transcription,

cell fate, cell migration or shape, etc.). Remarkably, even

if one looks at the scale of individual signaling proteins,

one can find the same type of organization. Even within

an individual molecule one can find domains responsible

for sensing inputs, domains or interactions that mediate

decision making, and domains that control output

(Figure 1). With this hierarchical architecture, new cellu-

lar behaviors — novel physiological INPUT/OUTPUT

relationships — do not require the evolution of new

systems, but merely new linkages between existing deci-

sion-making subsystems.

Ultimately, reconnecting signaling subsystems requires

rewiring individual signaling molecules that lie at the

junctions of these higher order subsystems. Links in the

cell’s signaling networks are often mediated by protein

domains that perform specific functions: protein–protein

interaction, subcellular localization, and catalysis. These

domains are often found in multi-domain proteins [6]

where their combination can yield switch-like enzymes

gated by upstream signals, or scaffolds that rewire and

guide signaling cascades (Figure 1). In the context of

evolution [7,8], development [9], differentiation [10], and

disease [11,12], it is clear that new cellular behaviors often

arise when existing molecular modules are recombined to

generate new receptors, sensors and downstream signal-

ing protein. In this review, we highlight recent advances

in the design of synthetic signaling systems made by

following the same approach. In other words, by learning

how to rewire individual signaling proteins, we are at the

same time learning how to rewire whole networks.

Engineering new sensor/receptor molecules
Like a microscopic Argus,3 each cell perceives its envi-

ronment through an array of molecular sensors and recep-

tors. Synthetic biology now affords us the ability to further

expand the cell’s ‘field of view.’ Modularly engineered

receptors and sensors can be used readily to link a variety

of new inputs to a critical cellular response (as in the case

of chimeric antigen receptors), or use a single input (light)

to selectively modulate dozens of intracellular signaling

systems with precise spatial and temporal control.

CARs: extracellular receptor proteins that detect user-

specified antigens

It is hard to believe that simply replacing the extracel-

lular domain of a receptor protein with an unrelated
3 Watchman in Greek mythology whose body was covered with

100 eyes.

www.sciencedirect.com 
recognition module would allow one to redirect its input

sensing, but that is exactly how chimeric antigen recep-

tors (CAR) work. A CAR is a fusion protein combining

an extracellular single chain antibody (scFv) with intra-

cellular regulatory domains of the T-cell receptor com-

plex. Remarkably, when a CAR is expressed in a T cell,

this can be sufficient to reprogram the cell to detect and

attack tumor cells bearing the cognate antigen [13,14]

(Figure 2a). Initial clinical results with CARs have been

highly promising for treatment of B cell cancers (target-

ing the B cell specific antigen CD19) [15], although

over-activation (cytokine storm) and off-target damage

are severe problems [16,17]. To address these issues of

safety, more precisely regulated CAR variants were

recently developed by separating the sensing and intra-

cellular signaling domains of the CAR into two separate

molecules, and then inducibly reuniting the two com-

ponents with a modular drug induced heterodimeric

interaction. In this way, the split-CAR is essentially a

version of the T cell receptor that has been engineered

to be controlled by two novel inputs — the disease

antigen and the small molecule [18�]. Likewise, CARs

gated by the presence [19,20] or absence [21] of sec-

ondary antigen on the target cell have been generated

using these secondary antigens as a target for co-recruit-

ment of synthetic modulatory receptors that contain

intracellular activating or inhibitory domains, respec-

tively.

A second class of engineered receptors harnesses the

regulatory mechanism observed in the native Notch

receptor. Notch engagement of an extracellular ligand

triggers proteolysis of the receptor, releasing a transcrip-

tion factor (contained in the receptor’s intracellular frag-

ment) that enters the nucleus and drives downstream

gene expression. Following this model, synthetic systems

have been constructed in which TEV protease and a

membrane tethered transcription factor are co-localized

by activated GPCRs (G-protein coupled receptors) and

RTKs (receptor tyrosine kinases) [22], or — in a more

general form — by any ligand that induces receptor

dimerization [23]. It was recently discovered that

the proteolytic core of Notch is a modular regulatory

element — enabling the generation of synthetic Notch

receptors (synNotch) in which both extracellular target-

ing and induced gene expression are fully customized

(Figure 2a) [24]. Importantly, synNotch and CAR recep-

tors are highly complementary. T cells engineered so that

synNotch activation drives CAR expression show high

specificity for dual-antigen tumors in vivo [25].

Sensors that detect bioorthogonal stimuli such as light

and small molecules

Another approach to engineering novel control over cell

behavior is to construct signaling proteins that are respon-

sive to flexible user-controlled inputs, such as small

molecules and light. Small molecules and light can act
Current Opinion in Structural Biology 2016, 39:106–114
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Figure 1

sensors information
processing responses

recognition
transmission

effectors

RECEPTORS INTRACELLULAR
SIGNALING NODES

INPUT OUTPUT

INPUT OUTPUT writer reader

eraser

INPUT OUTPUT

motif

INPUT

OUTPUT

SIGNALING
NETWORKS

SIGNALING
PROTEINS

sc
af

fo
ld

Current Opinion in Structural Biology

Hierarchical organization of signaling systems: cells and individual proteins as input/output nodes. At any scale, a signaling system must have

three components — it must have sensors to receive INPUT, an information-processing layer that decides what to make of this information, and

an OUTPUT function. These components are found in individual signaling molecules, which detect and effect particular upstream and downstream

molecular partners. In receptors that span the cell’s membrane, ligand binding to extracellular domains (INPUT) rapidly regulates the activity of

intracellular effector domains (OUTPUT). Similarly, posttranslationally-regulated binding motifs link the activities of upstream enzymes that ‘write’

and ‘erase’ the posttranslational mark (INPUT; e.g. kinases and phosphatases) to recruitment of dedicated ‘reader’ domains (OUTPUT). The same

classes of components are found in signaling networks and whole cells, but in this case receptor molecules function as INPUT sensors, networks

of intracellular proteins function as the information processing layer, and various cellular response modules control OUTPUT.
within the cell and eliminate the need for transmembrane

receptors that are able to transmit signals across the

membrane. Inducible signaling proteins help us under-

stand and engineer signaling networks by enabling us to

observe network function in response to precisely defined

pathway inputs. The first generation of inducible signal-

ing systems relied on chemically induced dimerization

(CID) of modular binding domains that homo-dimerize or

hetero-dimerize upon binding of a small molecule ligand.

These have been previously reviewed [26�]. Below, we

focus on the next generation of tools that use light as an

inducer (broadly termed ‘optogenetics’), providing new

strategies for protein control with exquisite spatial and

temporal precision. Optogenetic proteins are engineered

from natural photoreceptor domains that coordinate with

light-sensing cofactors. Absorption of light by these cofac-

tors induces photoisomerization that drives a conforma-

tional change in the associated protein domain. This

conformational change is then coupled to larger allosteric

changes or enhanced protein–protein interactions. A

small set of photoreceptor modules that undergo light-

induced dimerization, oligomerization, or steric regula-

tion (Figure 2b) have been recurrently used to achieve

optogenetic control over diverse signaling proteins and

networks.

Light-induced dimerization

Optogenetic protein homo-dimerization and hetero-

dimerization has been used in multiple strategies to
Current Opinion in Structural Biology 2016, 39:106–114 
regulate signaling nodes throughout the cell. Receptor

tyrosine kinases (RTKs) EGFR, FGFR, and Ret have

been endowed with blue light regulation through fusion

of their intracellular tails to a small, blue-light-sensing

homo-dimerization domain [27�]. Hetero-dimerization

has been used to regulate signaling through protein

recruitment to particular cellular compartments. Plasma

membrane recruitment of activating guanine nucleotide

exchange factors (GEFs) has been an effective strategy

for control of small GTPases Rac, Rho, Cdc42, and Ras

[28�,29], and, conversely, recruitment of an inhibitory

GTPase activating protein (GAP) was reported as a

method to inhibit G-protein coupled receptors [30].

Membrane recruitment was also used to regulate signal-

ing through Raf-1 [31] and PI3K [32]. Inducible nuclear

recruitment enabled optogenetic control of transcription

factor activity [33], and optogenetic recruitment to other

cellular compartments was reported as a general strategy

for titrating away signaling proteins [34,35]. Still other

dimerization-based approaches used homo-association of

Dronpa mutants to sterically or allosterically regulate

activity of a catalytically active GEF protein [36], and

optogenetic dissociation of a constitutive dimer enabled

optical control over protein trafficking and secretion [37].

Light-induced oligomerization

Multivalency and higher-order protein assembly play key

regulatory roles in many cellular signaling systems [38],

and recent work illustrates how protein clustering can be
www.sciencedirect.com
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Engineering new sensor/receptor systems. (a) The chimeric antigen receptor (CAR) was engineered to sense a tumor antigen and induce an

immunogenic response against tumor cells expressing that antigen. Modular recombination of the CAR domains with new sensor modules has enhanced

specificity of the CAR-T response either through logic gates requiring combinations of specific antigens or licensed by small molecule dimerization of

critical signaling domains [18�,19–21]. A second type of engineered receptor based on Notch (synNotch) allows both input (target antigen) and output

(gene expression) to be fully customized [24]. CAR and synNotch receptors can be combined synergistically, refining the specificity and scope of the

T cell response [25]. (b) Modular optogenetic tools for controlling receptors and signaling proteins. Protein domains from plants that undergo light-

induced dimerization, oligomerization, or steric regulation have been used to regulate signaling activities throughout the cell in a modular fashion.

www.sciencedirect.com Current Opinion in Structural Biology 2016, 39:106–114
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placed under optogenetic control. Blue light-induced

oligomerization of the Arabidopsis Cryptochrome2 pro-

tein has enabled activation of RTKs, both exogenous

[39,40,41] and endogenous [41], as well as the Orai1

calcium channel [42] and the canonical Wnt pathway

co-receptor LRP6 [43�]. Within the cytoplasm, cluster-

ing has been used to regulate Rho GTPase [43�] and

Raf1 kinase [44] activity. Inducible clustering has also

been used to regulate DNA damage signaling in the

absence of DNA damage through oligomerization  of

TopBP1 [45].

Light-induced steric regulation

The blue light-induced conformational change of the

LOV2 domain from A. sativa phototropin has been suc-

cessfully used to sterically regulate small peptides con-

trolling multiple cellular functions in a modular fashion.

These functions include protein interaction [46,47], pro-

tein degradation [48,49], and nuclear translocation

[50,51]. Steric occlusion of the appropriate peptides has

also yielded optogenetic inhibition of specific kinases

[52�] and activation of calcium channels [53].

Engineering phosphorylation control:
intracellular posttranslational circuitry
Once a cellular sensor is activated, the signal is often

relayed through a posttranslational regulatory network

that processes that information and directs the cell to

execute an appropriate response. Phosphorylation is the

most common posttranslational modification [54], and
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efforts to engineer phospho-signaling proteins have shed

light on how posttranslational networks function and how

they can be rewired.

Engineered scaffolds for phospho-signaling

Proteins with multiple interaction domains can serve as

molecular scaffolds, organizing multiple proteins in a

signaling pathway into a complex (Figure 1). In yeast,

the scaffold protein Ste5 orchestrates the mating phero-

mone MAP kinase (MAPK) pathway. Ste5 co-localizes a

kinase cascade (MAPKKK ! MAPKK ! MAPK) and

serves as a platform for the spatial and temporal control

of these enzymes. To investigate how modular interac-

tions mediate kinase cascades, Ryu and Park designed

synthetic scaffolds using strings of repeated peptide

binding domains (PDZ) and fused complementary

PDZ ligands to each of the Ste5-associated kinases:

Ste11 (MAPKKK), Ste7 (MAPKK), and Fus3 (MAPK).

Synthetic scaffolds that co-localized two or more kinases

(MAPKKK AND [MAPKK OR MAPK]) at the cell

membrane were sufficient to functionally replace Ste5

[55] (Figure 3a). Moreover, these minimal scaffolds dem-

onstrated logic gate properties and could be tuned by the

co-recruitment of negative regulatory phosphatases. This

result matches findings with endogenous MAPK path-

ways, where recruitment of regulators to engineered

scaffolds reshapes the amplitude and timing of pathway

behavior [56]. This approach was recently extended by

the use of bacterial effectors [57]. The utility of this

approach is exemplified by OspF, a toxic protein that
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irreversibly inactivates MAPKs by catalyzing a beta-elim-

ination reaction that removes the hydroxyl group of the

key phospho-threonine side chain, thereby preventing

MAPK phosphorylation and consequent activation. This

mechanism enables Shigella flexneri to disable human

epithelial and dendritic cells. Repurposed as a tool for

synthetic biology, this pathogenic inhibitor has been used

to engineer a negative feedback loop that reshapes the

dynamic response of the yeast osmolarity pathway

(Figure 3a) and a T-cell ‘pause switch’ for adoptive

immunotherapy [57].

Phospho-regulated linear motifs

Signaling proteins are enriched in unstructured regions

(linear motifs) where the ‘writers’, ‘readers’, and ‘erasers’

of phosphorylation (kinases, phospho-binding domains,

and phosphatases, respectively) collectively regulate pro-

tein binding, concentration, and localization [58,59]

(Figure 1). Phospho-regulated linear motifs have been

used to create dynamic reporters of intracellular signaling.

FRET reporters for specific kinases link a phospho-regu-

lated intramolecular binding event (phosphorylated sub-

strate peptide + phospho-binding domain) to fluorescent

protein co-localization [60]. More recently, a synthetic,

phospho-stabilized, version of the destabilizing PEST

domain was fused to a fluorescent protein to construct

a live cell reporter of Erk activity [61]. In a third example

of phospho-engineering, Regot et al. built a reporter that

translocates in response to c-Jun N-terminal kinase (JNK)

activation by combining a nuclear export signal (NES)

activated by JNK phosphorylation, a phospho-inhibited

nuclear import signal (NLS), and a fluorescent protein

[62��] (Figure 3b). Importantly, this design can be readily

adapted to multiple types of kinases by either substitut-

ing the docking site for JNK with that of another MAP

kinase (MAPK), or mutating a kinase’s naturally occurring

substrate to introduce the NLS and NES modules. This

work illustrates the potential for modular engineering

with linear motifs, and complements recent advances

in the computational design of posttranslational regula-

tion [63].

Scaling up phospho-circuit design

In proteins that contain multiple phosphorylation sites,

phospho-regulated linear motifs can collectively form

information processors that integrate inputs, set re-

sponse thresholds [64], tune binding affinities [65],

amplify weak signals, and serve as ‘conduits’ for se-

quential signal transduction [66]. Analogous synthetic

‘devices’, built from combinations of phospho-regula-

tory modules, may ultimately make it possible to endow

engineered signaling proteins with complex informa-

tion processing behaviors.

One of the best-studied examples of multisite phosphor-

ylation is Sic1, a critical cell cycle regulator whose phos-

pho-induced degradation triggers S phase in budding
www.sciencedirect.com 
yeast [64,67]. Cyclin dependent kinase 1 (Cdk1), in

complex with a cyclin and the phospho-adaptor Cks1,

phosphorylates Sic1 in an ordered sequence at multiple

sites, culminating in the activation of phosphodegrons

within Sic1 that recruit the SCFCdc4 ubiquitin ligase

complex, thereby targeting Sic1 for rapid degradation.

Using synthetic Cdk1 substrates, Loog and colleagues

found that the rate at which Cdk1 phosphorylation pro-

pagates is determined by how well the fixed spatial

orientation of the three docking sites on the cyclin-

Cdk1–Cks1 complex fits with the linear pattern of phos-

phorylation sites along the length of substrates like Sic1

[68�]. These results suggest that a simple set of rules

might define the overall pattern and rates of phosphor-

ylation in a multisite cluster.

Eco1, a regulator of sister chromatid cohesion, is also

degraded after multisite phosphorylation. The timing of

Eco1 function is usually restricted to S phase by the

collective action of three different kinases (Cdk1,

Cdc7, Mck1). In healthy cells, sequential phosphorylation

by these kinases forms an SCFCdc4 phosphodegron, trig-

gering Eco1 destruction. However, inhibition of one

kinase (Cdc7) by the DNA damage response prevents

Eco1 destruction, allowing establishment of cohesion

after S phase. Lyons et al. characterized this system

and generated a mutant version of Eco1 in which Cdk1

directly primes Mck1 phosphorylation — bypassing

Cdc7’s phospho-regulation. This study revealed that a

single point deletion converts the naturally occurring 3-

pronged AND gate into a synthetic 2-pronged gate with

altered cell cycle sensitivity [69�] (Figure 3b).

Overall, these findings suggest that fairly simple rules

governing linear phospho-motifs are used by nature to

achieve quite sophisticated information processing. As we

learn to better manipulate these motifs, we may be able to

test and harness these emerging rules.

Forward evolution of signaling networks
Ultimately, to engineer cellular behavior, we want to

engineer cellular networks. But as described above, to

engineer cellular networks we need to learn how to

engineer individual signaling proteins and their connec-

tivity. We postulate that much of the functional innova-

tion in cellular signaling networks has evolved through

repeated duplication and recombination of modular

domains [7]. Researchers interested in posttranslational

engineering can now use bioinformatics tools [70,71,72] to

mine these naturally occurring circuits for domains that

are, in essence, ‘pre-validated’ for a high degree of

modularity (successfully functioning in many fusion con-

texts) and minimal crosstalk with other cellular compo-

nents. These parts complement the growing toolbox of

regulatory domains that have been validated (in an anal-

ogous manner) through repeated use in synthetic circuits

[5,73]. With these enriched building blocks, generating
Current Opinion in Structural Biology 2016, 39:106–114
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Combinatorial design for engineering signaling proteins and networks. We present here a conceptual workflow for engineering signaling networks

with desired properties. Small libraries of candidate circuits can be semi-rationally designed using a combination of validated signaling and

regulatory components together with computational models. These circuits can then be screened and optimized for the proper function. The

design of a network for cell polarization [74��] is provided as an example of this approach.
new signaling proteins could potentially be a straightfor-

ward matter of screening domain combinations (combi-

natorial libraries) and optimizing protein expression

[18�,28�,56]. The same approach can be iterated to gen-

erate posttranslational circuits of increasing complexity.

One successful example has been the construction of a

synthetic circuit for inducing artificial cell polarization in

yeast. Modular binding domains that recognize phospho-

inositide species were combined with modular catalytic

domains that modify these species, yielding a set of

proteins that form spatially localized positive and nega-

tive feedback loops. Together, this system of synthetic

proteins generates a self-organizing asymmetric pole of

the signaling molecule PIP3 [74��] (Figure 4). It is likely

that in the coming years, we will see more examples of the

construction of more complex synthetic signaling sys-

tems, enabled by a better understanding of modular

domains, but also by advances in computational design

and experimental combinatorial screening of libraries of

modular synthetic circuits. As the field of synthetic sig-

naling systems matures, a semi-predictive approach that

combines computational design with combinatorial

screening offers a pragmatic strategy for learning nature’s

design principles while tailoring cellular responses to

applications in medicine and biotechnology.
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