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SUMMARY

The scaffold protein Ste5 is required to properly
direct signaling through the yeast mating pathway
to the mitogen-activated protein kinase (MAPK),
Fus3. Scaffolds are thought to function by tethering
kinase and substrate in proximity. We find, however,
that the previously identified Fus3-binding site on
Ste5 is not required for signaling, suggesting an alter-
native mechanism controls Fus3’s activation by the
MAPKK Ste7. Reconstituting MAPK signaling
in vitro, we find that Fus3 is an intrinsically poor
substrate for Ste7, although the related filamentation
MAPK, Kss1, is an excellent substrate. We identify
and structurally characterize a domain in Ste5 that
catalytically unlocks Fus3 for phosphorylation by
Ste7. This domain selectively increases the kcat of
Ste7/Fus3 phosphorylation but has no effect on
Ste7/Kss1 phosphorylation. The dual requirement
for both Ste7 and this Ste5 domain in Fus3 activation
explains why Fus3 is selectively activated by the
mating pathway and not by other pathways that
also utilize Ste7.

INTRODUCTION

Living cells receive vast amounts of environmental information,

and a central question is how the cell’s system of signal trans-

duction proteins is able to specifically process this information.

This problem is particularly acute given that many closely related

molecules (e.g., kinases, phosphatases, etc.) are involved in

diverse, functionally distinct signaling pathways. An emerging

paradigm is that, in many cases, signaling pathways are orga-

nized by scaffold proteins. Scaffolds are proteins that interact

with multiple members of a pathway and are thought to function

as ‘‘wiring’’ elements that by tethering pathway components into
complexes and localizing them to specific sites in the cell, direct

the flow of signaling information. Scaffolds are proposed to both

enhance interactions between the correct signaling proteins and

to insulate them from interactions with competing proteins

(Bhattacharyya et al., 2006a, 2006b; Burack et al., 2002; Burack

and Shaw, 2000).

One of the first identified examples of a signaling scaffold is the

Ste5 protein from Saccharomyces cerevisiae, which plays an

essential role in signal transmission through the yeast mating

pathway. When yeast are stimulated by mating pheromone

from the opposite mating type, signal is transmitted from the

mating receptor (Ste2) via a heterotrimeric G protein (Gpa1,

Ste4 and Ste18) to a mitogen-activated protein (MAP) kinase

cascade. MAP kinase cascades are composed of three kinases

that successively phosphorylate and activate one another: signal

passes from a MAP kinase kinase kinase (MAPKKK) to a MAP

kinase kinase (MAPKK) and finally to a MAP kinase (MAPK). In

the mating pathway, signal is transmitted from the MAPKKK

Ste11 to the MAPKK Ste7 to the MAPK Fus3. The Ste5 scaffold,

although it has no catalytic domains (e.g., kinase domains), is

required for the mating response. Ste5 was initially identified

as a scaffold protein because, by yeast two-hybrid assays, it

was shown to have binding sites for all three MAPK cascade

members (Ste11, Ste7, and Fus3) (Choi et al., 1994) and the

Gb protein, Ste4 (Whiteway et al., 1995). Interaction with Ste4

localizes the Ste5 complex to the membrane upon stimulation,

allowing Ste11 to be activated by a membrane-localized (PAK)

kinase, Ste20. Additionally, interaction of Ste5 with the kinases

in the cascade is thought to promote their successive phosphor-

ylation.

The need for robust mechanisms for controlling signaling

specificity is particularly important for the mating pathway

because of the potential for cross-signaling with other related

MAPK pathways that use overlapping signaling components.

For example, the filamentous growth pathway, which is activated

by nitrogen starvation, requires kinases shared with the mating

pathway: the MAPKKK Ste11 and the MAPKK Ste7 (although it

does not require the scaffold Ste5). During the mating response,
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Figure 1. Ste5 Scaffold Protein Is Required for Mating Pathway Signaling

(A) The MAPKKK Ste11 and MAPKK Ste7 function in both the mating and filamentation pathways in yeast. Ste7 must select the appropriate MAPK to phosphor-

ylate in response to input (Fus3 for a-factor, and Kss1 for starvation).

(B) During mating, stimulation with a-factor leads primarily to phosphorylation of Fus3. This reaction requires the scaffold protein Ste5. Starvation input specif-

ically induces the filamentation response through phosphorylation of Kss1. The Ste5 scaffold is not required for filamentation.

(C) Expression of a constitutively active allele of MAPKKK Ste11 in a strain lacking Ste5 results only in Kss1 phosphorylation (both Kss1 and Fus3 phosphorylation

are observed in strains with Ste5), further indicating that the Ste5 scaffold is required, in vivo, for Ste11/Ste7/Fus3 signaling (Flatauer et al., 2005).
signaling to Ste7 is primarily transmitted to the MAPK Fus3, while

in the filamentation pathway signaling is transmitted to the MAPK

Kss1. Here we focus on the critical question of how activated

Ste7 chooses between the two MAP kinases, Fus3 and Kss1,

which are 55% identical (Figure 1A). Why does Ste7 that is acti-

vated by pheromone stimulation phosphorylate Fus3, whereas

Ste7 that is activated by nitrogen starvation phosphorylate only

Kss1? What is the role of the Ste5 scaffold in this specificity

choice?

Despite the importance of Ste5 as a canonical example of

a scaffold protein, little is understood about the biochemical

mechanisms that scaffolds use to regulate MAPK signaling

specificity. The simplest model for how a scaffold might promote

phosphorylation of one substrate versus another is through teth-

ering – by increasing the proximity and effective concentration of

components in the scaffold complex. Tethering, appears to be

important for certain key aspects of Ste5 function: mutation of

the binding sites for the Ste11 and Ste7 kinases disrupts signal

transmission, while re-recruitment of these proteins to the Ste5

complex via heterologous engineered protein-protein interac-

tions or covalent fusion can partially rescue signaling (Harris

et al., 2001; Park et al., 2003).

The mechanism by which Ste5 directs signaling from the

MAPKK Ste7 to the MAPK Fus3, however, is far less clear. Is

the scaffold needed to colocalize these kinases or does it play

some other role? Previous work identified and characterized

a binding site for Fus3 within Ste5. This �30 amino acid peptide

(288–316) binds Fus3 with an affinity of 1 mM, and it stimulates

partial Fus3 autophosphorylation (it promotes one of two phos-

phorylation events required for Fus3 activation) (Bhattacharyya

et al., 2006a). Surprisingly, however, mutation of this Fus3

binding site does not block mating but actually increases mating

output (as measured by transcription), suggesting that this site

plays more of a tuning role, modulating signaling dynamics

(Bhattacharyya et al., 2006a). Nonetheless, the scaffold as

a whole is still absolutely required for signaling to Fus3. Thus, it
1086 Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc.
appears that there may be another site in Ste5 that controls

Fus3 activation and that the scaffold may be playing a more

active or catalytic role in controlling signal transmission to this

MAP kinase.

Here we have purified components of the mating and filamen-

tous growth MAP kinase pathways (Ste7, Fus3, Kss1, and Ste5)

in order to understand the role of scaffolds in specifying in

MAPKK/MAPK signal transmission. We find that Fus3 is intrin-

sically a poor substrate for activated Ste7, while Kss1 is intrinsi-

cally a very good substrate. A �200 residue segment of Ste5,

however, is sufficient to permit Ste7 phosphorylation of Fus3

but has no effect on Kss1 phosphorylation. This Ste5 fragment

is distinct from the previously identified Fus3 binding site, and

crystallographic studies show that it is an independently folding

domain which we refer to as Ste5-ms (minimal scaffold). The

Ste5-ms domain binds tightly to Ste7, but only very weakly to

Fus3. However, mutational and kinetic studies show that the

Ste5-ms fragment can catalytically unlock the Fus3 MAPK so

that it is now a good substrate for Ste7. This domain specifically

increases the kcat for the Ste7/ Fus3 reaction by �5000-fold,

while it has no effect on the kcat or KM of the Ste7/ Kss1 reac-

tion. Fus3 appears to have evolved a structure that is ‘‘locked’’ to

prevent stray activation by isolated forms of Ste7 (generated by

non-mating inputs). Phosphorylation of Fus3 occurs only in the

combined presence of Ste7 and Ste5, and this mechanism

explains why Fus3 is only activated by mating input.

RESULTS

Fus3 Is an Intrinsically Poor Substrate for Ste7
that Requires Ste5 as a Coactivator
The MAPKK, Ste7, is used in two distinct yeast MAPK pathways,

the mating and filamentous growth pathways. When stimulated

by a-factor (pheromone input for the mating pathway), Ste7

primarily activates the mating-specific MAPK Fus3. However,

when stimulated by starvation (input for the filamentation or



Figure 2. Fus3 Is Intrinsically a Poor Substrate for Ste7, Unless the Ste5 Scaffold Is Present

(A) Fus3 and Kss1 both bind tightly to docking motifs (D-motifs) on Ste7 (KD �100nM for each MAPK).

(B) Coomassie stained gel showing purified components of the mating and filamentation MAPK pathways.

(C and D) Activation of Kss1 and Fus3 by Ste7EE in vitro measured using the Trulight kinase assay - in which phosphorylation of a MAPK-specific labeled peptide

substrate results in a decrease in fluorescence over time (the peptide quenches signal of a sensor bead coated with fluorescent polymers) (see Figures S2A–S2C).

50 nM of each protein was used in these assays. Ste7EE rapidly activates Kss1, and addition of the Ste5 scaffold has no impact on the reaction. (D) Fus3 cannot

be activated by Ste7EE, unless DN-Ste5 is added. These results demonstrate that Fus3 is intrinsically a very poor substrate for Ste7, and that Ste5 is a required

coactivator in Ste7/Fus3 phosphorylation.
haploid invasive growth pathway), Ste7 activates Kss1. How

Ste7 makes the appropriate input-dependent substrate choice

between Fus3 and Kss1 (Figure 1A) is a challenging question,

as the two alternative MAP kinases are very closely related

(55% identity; > 70% similarity; Figure S8A available online).

Previous genetic work indicates that the Ste5 scaffold is required

to direct signal from a constitutively active MAPKKK Ste11

through Ste7 to the mating MAPK Fus3 (Figure 1C) (Flatauer

et al., 2005). Could Ste5 be playing a direct role in the selective

activation of Fus3 by Ste7? To investigate the biochemical

requirements for Ste7/MAPK specificity, we purified key

components and reconstituted this pathway step in vitro.

Previous studies have shown that in addition to any scaffold

(Ste5) contributions, Ste7/Fus3 phosphorylation requires direct

docking interactions between the two proteins (Figure 2A). Ste7

has two MAPK docking motifs on its N-terminus. These are �10

residue peptide motifs (consensus motif: [RK][RK]X(4-6)LxL) that

are found to mediate functional interactions between MAPKs

and a variety of their regulators and substrates (Remenyi et al.,

2006). At least one of these docking motifs is required for phos-

phorylation of either Fus3 or Kss1 by Ste7 (Bhattacharyya et al.,

2006a; Remenyi et al., 2005). However, the docking sites in Ste7

cannot be sufficient to distinguish between Fus3 and Kss1, since

they bind to both Fus3 and Kss1 with roughly equal affinity

(stronger site KD �100nM) (Remenyi et al., 2005).
We first investigated whether Ste7 could activate the MAPKs

Fus3 and Kss1 in vitro. We expressed and purified the following

recombinant proteins: Fus3, Kss1, a constitutively active form of

Ste7 (Ste7EE, bearing S359E and T363E phosphomimic muta-

tions in the Ste7 activation loop) (Maleri et al., 2004), and

DN-Ste5 (Ste5, with a 279 residue N-terminal deletion, which

makes the protein soluble and biochemically tractable)

(Figure 2B). The ability of Ste7EE to activate Fus3 or Kss1 was

measured using a fluorescence-based MAPK assay (Trulight

kinase assay, Calbiochem–see Figure S2). We found that Ste7EE

rapidly activated Kss1, either in the presence or absence of puri-

fied Ste5 (all components at 50 nM) (Figure 2C). In contrast,

Ste7EE cannot activate Fus3, demonstrating that Fus3 is an

intrinsically weak substrate for Ste7 (Figure 2D). If, however,

the Ste5 scaffold is added, Ste7 rapidly phosphorylates Fus3

at a rate comparable to Kss1 (Figure 2D). These results indicate

that Fus3 is inherently a poor substrate for Ste7, but that Ste5

can serve as a coactivator to permit efficient Ste7/Fus3 phos-

phorylation.

A Novel Domain in Ste5 Is Required
for Fus3 Phosphorylation by Ste7
How does the Ste5 scaffold permit Ste7/Fus3 phosphoryla-

tion? The simplest model is that a protein scaffold like Ste5

acts as a tethering or colocalization device that enhances the
Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc. 1087
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Figure 3. Ste5 Contains a Novel Domain Required for Ste7/Fus3 Phosphorylation

(A) Ste5 is a large protein (917 aa) that contains previously identified binding sites for the mating pathway kinases. Canonical tethering model proposes that Ste5

colocalizes three kinases in the mating pathway (Ste11, Ste7, Fus3) to promote signaling.

(B) Deletion mapping identifies minimal region of Ste5 required for Ste7EE/Fus3 phosphorylation in vitro. As in Figure 2, Trulight assay was used to measure

Fus3 activation by Ste7EE. Amino acids 593–786 of Ste5 define the ‘‘minimal scaffold’’ domain (Ste5-ms) sufficient to promote Ste7/Fus3 phosphorylation.

(C) Confirmation that the Fus3-binding region (KD = 1 mM) in Ste5 is not required for phosphorylation of Fus3 by Ste7EE. DN-Ste5-ND (green curve) is a variant of

DN-Ste5 (black curve) bearing a mutation in the Fus3 binding region that disrupts interaction with Fus3. For panels C-E all reaction components are at 50 nM.

(D) Ste5-ms domain is as active as the larger scaffold protein (DN-Ste5).

(E) MAPK docking motifs on Ste7EE (KD �100 nM) are necessary for Fus3 activation. Mutation of these sites disrupt Ste7/ Fus3 phosphorylation, even in the

presence of Ste5 (purple curve).

(F) Ste5-ms binds to Ste7 but not to Fus3. Interactions were measured with fluorescence polarization (anisotropy) using 5nM of fluoroscein-labeled Ste5-ms. Error

bars represent standard deviation of three sets.

(G) Minimal interactions necessary for formation of the Ste5-Ste7-Fus3 signaling complex.
interaction of proteins that interact poorly on their own

(Figure 3A). Consistent with a tethering model, mutagenesis of

Ste5 and a prior yeast-two hybrid study have identified binding
1088 Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc.
sites for both Ste7 and Fus3 within the Ste5 scaffold (Choi

et al., 1994; Inouye et al., 1997a; Figure 3B). Conversely, two

other results argue strongly that Ste5 is not acting as a simple



tether to promote Ste7/Fus3 phosphorylation. First, as

described above, Fus3 can already bind tightly to Ste7 without

the scaffold due to the MAPK docking motifs found at the

N-terminus of Ste7 (Bardwell et al., 1996; Remenyi et al., 2005).

Second, we show here that the previously identified Fus3 binding

site in Ste5 (residues 288–316 in Ste5) is not required to promote

the Ste7/Fus3 reaction. A variant of Ste5, in which this site is

mutated so that it no longer binds Fus3 (Ste5-ND) (Bhattacharyya

et al., 2006a), is indistinguishable from the wild-type protein in its

ability to promote the Ste7/Fus3 reaction in vitro (Figures 3B

and 3C). In contrast when the MAPK docking sites in Ste7 are

mutated, Ste7 cannot phosphorylate either Fus3 or Kss1, both

in the presence or absence of Ste5 (Figure 3E). Furthermore,

when the previously identified Fus3 binding domain in Ste5 is

mutated in vivo, mating output upon alpha-factor stimulation

actually increases (Bhattacharyya et al., 2006a). Together, these

results are consistent with a model in which this previously char-

acterized Fus3 binding motif does not play a role in promoting the

main flow of signaling information from the MAPKK Ste7 to the

MAPK Fus3, but rather plays a modulatory role in tuning the quan-

titative and dynamic output of the pathway.

The finding that the Fus3 binding domain in Ste5 is not

required for mating signaling in vitro led us to postulate that there

might be a different region of Ste5 that promotes Ste7/Fus3

phosphorylation. Therefore, we performed deletion analysis to

search for the minimal region of Ste5 that was capable of permit-

ting Ste7/Fus3 phosphorylation (Figure 3B). We identified a

�200 residue fragment of Ste5 (593-786) that was sufficient for

promoting Fus3 phosphorylation. As will be discussed later,

structural analysis revealed that this fragment forms a unique,

independently folded domain. This domain was at least as active

as a larger fragment of Ste5 (DN-Ste5) in promoting Ste7/Fus3

phosphorylation (Figure 3D) and we refer to the domain as the

Ste5 minimal scaffold (Ste5-ms). The Ste5-ms domain lacks

the previously identified Fus3 and Ste11-binding regions but

contains part of the previously mapped Ste7-binding region

(Inouye et al., 1997a).

In fluorescence polarization binding studies, we found that the

Ste5-ms domain binds tightly to Ste7 (KD = 75nM) (Figure 3F) but

does not detectably bind to Fus3 (Figure 3F). The lack of a strong

Fus3 binding site in the Ste5-ms fragment argues against

a mechanism in which this fragment is acting as a passive tether,

simply increasing the effective concentration of Ste7 and Fus3.

Although colocalization of the two proteins does appear to be

necessary, it is the direct docking interaction between the

MAPKK Ste7 and MAPK Fus3 that plays this role (Figure 3G).

Tethering of the two proteins (Ste7 and Fus3) together, however,

does not seem to be sufficient for Fus3 activation. Thus the Ste5-

ms domain must play a distinct functional role in promoting

phosphorylation.

Ste5-ms Selectively Improves kcat for Fus3
but Not Other Substrates
To understand precisely how the Ste5-ms domain contributes to

Fus3 phosphorylation we performed quantitative kinetic anal-

yses (Figure 4). We measured the kcat and KM of Fus3 and

Kss1 phosphorylation by Ste7EE both in the presence and

absence of the Ste5-ms fragment (scaffold concentration
1 mM). To simplify the kinetic analysis, we used a variant of

Ste7 with a single docking site (mutant Ste7EE-ND2 has the

second, weaker docking motif removed). This Ste7EE variant

has the same kcat as Ste7EE with both docking motifs, and

behaves similarly in other assays both in vivo (Bhattacharyya

et al., 2006a) and in vitro (data not shown) (Remenyi et al.,

2005). As a substrate, we used a catalytically-dead allele of the

MAPK Fus3 (K42R) in order to eliminate background autophos-

phorylation that is observed for the wild-type protein.

These experiments show that the Ste5-ms domain enhances

the kcat of Fus3 phosphorylation by Ste7EE by �5000-fold,

with little effect on the KM (Figure 4C), further contradicting

a potential tethering role for the Ste5-ms domain (which would

be expected to lower the KM). This effect on kcat is highly

substrate specific - the Ste5-ms domain has essentially no

impact, positive or negative, on the kcat or KM of Kss1 phosphor-

ylation by Ste7 (Figures 4C and 4D). By varying the concentration

of Ste5-ms in a reaction containing 50 nM Ste7EE-ND2 and satu-

rating (750 nM) Fus3 we determined that the concentration of

Ste5-ms required to maximally exert its effects is less than

1 mM. This titration experiment gives a midpoint of activation

(Kactivation, an estimation of Ste7/Ste5-ms dissociation) of

161 nM. This number is roughly the same as the KD for the

Ste7-Ste5-ms interaction measured by anisotropy (75 nM),

consistent with a model in which the Ste7/Ste5-ms complex is

the catalytically competent complex.

A simple model for how the Ste5-ms domain kinetically modu-

lates the Fus3 phosphorylation reaction is shown in the reaction

coordinate free energy diagrams (Figure 4F). Ste7EE is able to

phosphorylate Kss1 efficiently in the presence or absence of

Ste5 because it has a low transition state energy (EdS z). In

contrast, Ste7EE is unable to phosphorylate Fus3, because it

has a much higher transition state energy—Fus3 is an intrinsi-

cally poor substrate. The Ste5-ms scaffold domain is able to

lower the energy of Fus3’s transition state, resulting in a higher

kcat, thereby converting a very poor substrate into a good

substrate, comparable to Kss1. Thus, the Ste5-ms domain is

essentially serving as a substrate specific cocatalyst for

Ste7/Fus3 phosphorylation – a role that is conceptually similar

to that of a cyclin which acts as a cocatalyst for the cyclin-depen-

dent kinase (Cdk).

Ste5-ms Is a Folded Domain with Distinct Surfaces
for Communicating with Ste7 and Fus3
To understand how the Ste5-ms domain might act as

a substrate-specific cocatalyst, we determined the structure of

the domain. We obtained crystals of the Ste5-ms fragment and

solved the structure to 1.6 Å resolution (Figures 5A and S5A

and Table S2; PDB ID = 3FZE). This fragment adopts a well-

ordered, independently folded structural domain. While primary

sequence analysis (BLAST) failed to identify proteins clearly

related to the Ste5-ms domain (outside of yeasts closely related

to S. cerevisiae), the structural homology program DALI (Holm

and Sander, 1996) showed that this domain shares the same

fold as the von-Willebrand Type-A (VWA) domain found in extra-

cellular matrix proteins and integrin receptors (Figures 5B and

S5B). Although many of known VWA domain proteins are extra-

cellular, the most ancient VWA domains conserved across all
Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc. 1089



Figure 4. Ste5-ms Domain Selectively Improves kcat, but Not KM, for the Substrate, Fus3

(A) Simple kinetic scheme for Ste7/MAPK phosphorylation. Ste7EE enzyme converts substrate (MAPK) into doubly-phosphorylated product (MAPK-pp). Fus3

and Kss1 phosphorylation by Ste7EE was quantified using in vitro western blots with an anti-phospho p44/42 MAPK antibody (see Figures S1A–S1D and S4).

(B) Michaelis-Menten plots show Fus3 phosphorylation requires Ste5-ms, Kss1 phosphorylation does not. Ste7EE-ND2 (which contains only one MAPK docking

motif, KD�100nM), and Fus3-K42R (which is catalytically dead) were used to simplify the analyses. Kinase reactions contain 50nM Ste7EE-ND2, and a saturating

concentration (1000 nM, where appropriate) of Ste5-ms (see [E]). Fus3 activation by Ste7EE-ND2, in the absence Ste5-ms, is very slow but can be measured

(inset graph). Error bars show standard deviation of triplicate runs.

(C) Ste5-ms enhances the kcat of Ste7/Fus3 phosphorylation by�5000-fold, with negligible effect on KM. Ste5-ms has little or no effect on the kcat or KM of Kss1

phosphorylation. Overall specificity (kcat /KM) of Ste7 for Fus3 and Kss1 is comparable (�105 M-1 s-1).

(D) Effect of Ste5 on Ste7/MAPK phosphorylation reaction parameters, plotted as the fold-change in kcat, 1/KM, and kcat /KM for Fus3 and Kss1 activation by

Ste7EE-ND2. Major effect of Ste5 is enhancement of the kcat for Fus3 phosphorylation.

(E) Determination of the concentration of Ste5-ms required to drive Ste7/Fus3 phosphorylation. 50 nM Ste7EE was used along with a saturating amount of Fus3

(750 nM, based on [B]). Rate of Fus3 activation reaches half-maximum at �161nM Ste5-ms (±60nM), which we infer is an apparent dissociation constant for the

Ste7/Ste5-ms interaction. 1000 nM Ste5-ms, used in experiments described in panel 4B, represents a saturating concentration.

(F) Reaction free energy diagram illustrating how Ste5-ms selectively lowers the energy of the transition state for Fus3 phosphorylation (dotted line).
eukaryotes appear to be intracellular proteins involved in diverse

multiprotein assemblies (Whittaker and Hynes, 2002).

Using the Ste5-ms structure as a guide, we performed exten-

sive mutagenesis of the ms domain surface to try to identify
1090 Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc.
regions of the protein that are critical for catalysis (Figure S6).

Twenty one mutant proteins were generated, each containing

a block of 2–3 mutant residues clustered together on the protein

surface. Of these mutant proteins, six out of 21 showed greatly
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Figure 5. Ste5-ms Is a Folded Domain with Distinct Surfaces Important for Kinase-Binding and Catalysis

(A) Crystal structure of the Ste5-ms domain (1.6 Å resolution; data collection and refinement statistics can be found in Table S2). Structural figures were made

using Pymol (DeLano, 2002). Deposited as PDB ID 3FZE.

(B) Structural alignment using DALI illustrates the Ste5-ms domain is homologous to the von-Willebrand Type-A (VWA) domain. Cartoon of VWA domain fold and

topology.

(C) Ste5-ms has two distinct surfaces critical for Fus3 phosphorylation by Ste7 (identified by surface mutant scan of Ste5-ms for mutations with >100-fold

decrease in activity. See Figure S6 for full list of mutants used in the scanning experiment). One interface, the ‘‘coactivator loop’’ (745–756) is critical for catalyzing

Ste7/Fus3 phosphorylation (phenotypes are represented by mutant ‘‘C,’’ N744A/D746A), and another interface is necessary for Ste7-binding (represented by

mutant ‘‘B,’’ deletion of 778–786).

(D) kcat of Ste7/Fus3 phosphorylation reduced 100-fold for Ste5-ms mutant B and reduced nearly 1000-fold for mutant C. Error bars denote standard deviation

of three measurements. These mutants have no effect on the KM of Ste7-Fus3 phosphorylation (data not shown). Ste5-ms variants present at 1 mM, a concen-

tration that saturates binding to Ste7 for Ste5-ms wild-type.

(E) Pull-down assays show Ste5-ms mutant B is defective in binding to Ste7; mutant ‘‘C’’ maintains Ste7 binding. Ste5-ms mutants were expressed as fusions to

maltose binding protein (MBP) as a pull-down affinity tag.

(F) Catalysis of Ste7/ Fus3 reaction by Ste5-ms mutant B, but not mutant C, can be restored by adding much higher concentrations of the mutant scaffold

domain. Vmax for Ste7/Fus3 reaction, measured using 50 nM Ste7EE and 750 nM Fus3. Point of half-max activation (Kact) gives apparent dissociation

constants of Ste5-ms variants for Ste7. As expected, wild-type Ste5-ms has a Kact of 150 nM, while Mutant ‘‘B’’ had greatly diminished Kact = 15,500 nM, consis-

tent with a defect in Ste7 binding. At high enough concentrations, mutant B can promote signaling to near wild-type levels. Ste5-ms mutant C shows a Kact close

to wild-type (71 nM) (Figure S7B), but its Vmax at saturating concentrations is 1000-fold lower than wild-type (bar graph to right). This behavior is consistent with

a defect in the catalytic step of Ste7/Fus3 phosphorylation.
Cell 136, 1085–1097, March 20, 2009 ª2009 Elsevier Inc. 1091



diminished (>100-fold decrease) ability to promote Ste7-to-Fus3

phosphorylation (Figure S6B). We then screened these mutants

for their effect on both binding to Ste7 and on the kcat of Fus3

phosphorylation (Figures S6B and S7A).

Five of the six mutations to the Ste5-ms domain that signifi-

cantly disrupt activity cluster on two structurally and functionally

distinct interfaces (Figure 5C). The first interface contains four

sets of mutations that selectively block catalysis without disrupt-

ing binding to Ste7; these mutations significantly reduce the kcat

for Ste7EE-ND2/Fus3 phosphorylation, but do not alter Ste7/

Ste5-ms interaction (representative mutant ‘‘C’’ is shown

in Figures 5D and 5E). This region is composed of a semi-disor-

dered loop (residues 745–756) which we have named the ‘‘coac-

tivator loop.’’ We postulate that this loop plays a role in lowering

the barrier of the Ste7/Fus3 phosphorylation reaction, perhaps

through transient interactions with Fus3.

A second interface, near the C terminus of the Ste5-ms

domain, appears to be involved in direct binding to Ste7. This

interface consists of a negatively charged segment (DEHDDD

DEEDN, residues 776–786). Mutant ‘‘B’’ is a variant of the

Ste5-ms domain in which the nine most C-terminal residues

(778–786) have been deleted. This mutant is catalytically

impaired, most likely because, as shown in pull-down assays,

it has greatly reduced binding to Ste7 (Figures 5D and 5E). In

summary, there appear to be two functionally distinct surfaces

on the Ste5-ms domain that are critical for its function in

promoting Ste7/Fus3 phosphorylation: one that is responsible

for association with Ste7, and a distinct surface that is respon-

sible for Fus3-specific catalysis.

A prediction of this model is that the mutations that selectively

reduce the affinity of the Ste5-Ste7 interaction should be able to

rescue the Ste7/Fus3 reaction if added at much higher

concentrations (kcat values shown in Figure 4D were only

measured at a concentration of 1 mM Ste5-ms). As predicted,

a Ste5-ms protein bearing mutation B, which selectively disrupts

Ste7 binding, has a kcat for the Ste7/Fus3 reaction that is

comparable to that of the wild-type protein, but only when added

at�100-fold higher concentrations (Figure 5F). In contrast, addi-

tion of increasing amounts of a Ste5-ms protein bearing mutation

C (a ‘‘coactivator’’ mutation) plateaus at a kcat that is 1000-fold

lower than observed with wild-type Ste5-ms (does not result in

increased kcat) (Figure S7B).

The importance of these two regions within the Ste5-ms

domain is also highlighted by alignment of homologs of Ste5

from other fungal species. The most conserved region of these

Ste5 scaffold homologs corresponds to the Ste5-ms domains

(Figure S3B), and especially both within the coactivator loop

(745–756) and across the previously defined Ste7 binding region

(Figure S3C).

Ste5-ms Domain Catalytically Unlocks Fus3
for Phosphorylation by Ste7
There are two distinct models for how the Ste5-ms domain

promotes Ste7/ Fus3 phosphorylation. One model is that the

Ste5-ms primarily acts as an activator of Ste7 to enhance its

overall catalytic activity (Figure 6A, top), much as a cyclin acti-

vates a CDK. A second competing model is that Ste5-ms

primarily acts to convert Fus3 from a poor Ste7 substrate to
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a good Ste7 substrate (Figure 6A, bottom). A prediction of the

first model is that addition of Ste5 to Ste7 will enhance its overall

kinase activity toward any substrate. To test this model, we

compared rates of phosphorylation of a general substrate,

myelin basic protein, by Ste7EE, in the presence and absence

of the Ste5-ms domain (Figure 6B). The rates are indistinguish-

able, indicating that the Ste5-ms domain is not a general acti-

vator of Ste7. In addition, as described above, the addition of

Ste5-ms has no effect on the Ste7/Kss1 reaction (Figures 4B

and 4C). These two findings strongly disfavor a model where

the Ste5-ms upregulates the general kinase activity of Ste7 to

enhance Fus3 phosphorylation.

These results point toward the alternative model in which the

Ste5-ms exerts its effect on the substrate – it selectively improves

Fus3 as a substrate for Ste7. This model suggests that a key

difference between the closely related, competing MAPK’s

Kss1 and Fus3, is that Kss1 is already primed to be a good

substrate for Ste7, but that Fus3 is, by itself, locked in a state

that makes it a poor substrate. If this is true, then we reasoned

it might be possible to make mutations in Fus3 that ‘‘unlock’’ it,

making it more like Kss1 which can serve as a scaffold-indepen-

dent substrate for Ste7. We made ten sets of mutations in Fus3

that make the sequence more like Kss1, based on sequence

regions that diverge between Fus3 and Kss1. We tested the ability

of activated Ste7 (Ste7EE-ND2) to phosphorylate these chimeric

mutants in the absence of Ste5 (Figures S8A–S8D). We found that

a mutation of residue I161L combined with replacement of resi-

dues 243–254 (a region known as the ‘‘MAPK insertion loop’’)

with the comparable insert from Kss1 resulted in a Fus3 variant

that had an approximately 20-fold increase in kcat compared to

Fus3 wild-type, in the absence of scaffold (Figures 6C and

S8D). Consistent with this result, previous studies showed that

a I161L mutant in Fus3 could partially complement the loss of

Ste5 scaffold in mating pathway activation in vivo (Brill et al.,

1994). We mapped the location of mutations that ‘‘unlock’’ Fus3

onto its crystal structure (Reményi et al., 2005), which shows

that these residues lie near the Fus3 activation loop (Figure 6D).

These data suggest a model for how Fus3 phosphorylation

may be regulated by the Ste5 scaffold. We postulate that

Fus3’s activation loop normally exists in a locked state so that

it cannot be easily phosphorylated by Ste7. However, when

the scaffold is present and bound to Ste7, the Ste5-ms domain

may stabilize a transition-state conformation of Fus3’s activation

loop that is accessible to Ste7 (Figure 6E). The precise mecha-

nism of how the activation loop structure and dynamics are

altered remains to be elucidated.

DISCUSSION

Assisted Catalysis and Tethering: Complementary
Mechanisms by which the Ste5 Scaffold Directs
Specificity of MAPK Signaling
Scaffold proteins have emerged as important elements in deter-

mining the wiring of cell signaling pathways. The simplest model

for how scaffolds direct signaling specificity is through tethering:

corecruiting components to the same site. In the case of the

yeast mating MAPK scaffold Ste5, there is ample evidence that

tethering plays a central role in its function: Ste5 interacts with



the Gb protein Ste4, the MAPKKK Ste11, and the MAPKK Ste7,

and disruption of these interactions is sufficient to destroy proper

signaling. Moreover, the effects of these mutations can be over-

come by re-recruiting the missing components to the complex

via heterologous interactions or protein fusions (Harris et al.,

2001; Park et al., 2003). Nonetheless, it has been far less clear

if Fus3 activation in the mating pathway is directed by Ste5

through a tethering mechanism, because disruption of the previ-

ously mapped Fus3 interaction site on Ste5 does not impair the

mating response (Bhattacharyya et al., 2006a).

Here we show that the Ste5 scaffold protein plays a far more

active, cocatalytic role in directing Ste7/Fus3 signaling. A

A

E

B

C

D

Figure 6. Ste5-ms Catalytically Unlocks Fus3 for Phosphorylation by Ste7

(A) Two potential models for how Ste5-ms enhances Ste7/Fus3 phosphorylation. One model proposes that Ste5-ms primarily acts on Ste7; Ste7 is a poor

enzyme that requires Ste5-ms binding to increase its activity (top). An alterative model hypothesizes that Ste5-ms acts primarily on Fus3 - converting it from

a poor substrate to a good one (bottom).

(B) Ste5-ms has no effect on overall catalytic activity of Ste7EE as tested against the general kinase substrate, Myelin Basic Protein (MBP) using a 32P kinase

assay.

(C) To identify elements in Fus3 that make it a poor substrate compared to Kss1, we made mutations in Fus3 that make it more similar in sequence to Kss1

(Figures S8A and S8B). These mutants were tested for their ability to be phosphorylated by Ste7EE in the absence of Ste5 (Figures S8C and S8D). A combined

mutation of I161L with replacement of the 243-254 ‘MAPK insertion loop’ (with the same region from Kss1) created a Fus3 mutant with a 20-fold increase in kcat

compared to wild-type (reaction contains 50 nM Ste7EE-ND2, 750 nM Fus3 variant, no scaffold). Error bars represent standard deviation from three data sets.

(D) Crystal structure of Fus3 (Remenyi et al., 2005), showing positions of critical mutations in red (I161L, and MAPK insert 243–254). The activation loop (shown as

dotted line; not fully visible in the crystal structure) sits between these two regions. Residues that become phosphorylated (T180 and Y182) shown in green.

(E) A model for Ste5-ms action: Fus3’s activation loop normally adopts a ‘‘locked’’ conformation, but Ste5-ms interaction with Fus3 transiently (and only in the

presence of Ste7) stabilizes a transition state in which Fus3’s activation loop is accessible to Ste7.
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specific domain in Ste5, which we have named the minimal scaf-

fold, or ‘ms’ domain, is a necessary cofactor for the Ste7/Fus3

phosphorylation reaction: Fus3 is an extremely poor substrate in

the absence of this Ste5 domain, although Ste7 is a perfectly

competent enzyme. Conceptually, this domain of the scaffold

is a required cofactor, much like a cyclin is a required cofactor

for CDK. However, the Ste5-ms domain appears act in a unique

fashion: kinase accessory factors like a cyclin generally act by

either globally increasing the kcat for kinase activity (usually

by allosterically repositioning key catalytic residues) or by

decreasing the KM for specific substrates via additional

substrate recognition sites (Loog and Morgan, 2005; Pavletich,

1999). In this case, the Ste5 scaffold improves the kcat of the

phosphorylation reaction, but in a manner that is only specific

for one substrate, Fus3. The KM of Ste7/Fus3 phosphorylation

is likely dictated by the strength of MAPK docking interactions

(data not shown).

A catalytic role for the Ste5 scaffold helps to explain several

paradoxes concerning organizing factors like scaffolds that

were presumed to function solely by a tethering mechanism.

First, if a tethering scaffold is present at a higher concentration

than its components, it might cause inhibition of pathway, by

segregating individual components into different complexes.

Second, if a tethering scaffold uses increased binding energy

to shunt signaling specificity toward one substrate, then it may

be more difficult to release this component. This issue is critical

for a MAPK like Fus3, which must dissociate from the scaffold

and enter the nucleus to exert many of its downstream effects.

FRAP studies show that Fus3 rapidly dissociates from the Ste5

complex, more so than other pathway components (van Drogen

and Peter, 2002; van Drogen et al., 2001). These two issues,

however, are mitigated by a mechanism in which the scaffold

plays a direct catalytic role. Inhibitory segregation would not

be observed if the Ste7-Ste5 complex is the only unit that is

able to activate Fus3 (Ste7 or Ste5 cannot activate Fus3 individ-

ually). In addition, the lack of a strong direct Ste5-ms/Fus3 inter-

action in the Fus3 activation step may allow reasonably rapid

dissociation of active Fus3 from the complex (Maeder et al.,

2007).

A Revised Model for How Ste5 Coordinates the Mating
MAPK Pathway
While Ste5 still acts as a central organizer of the mating MAPK

pathway, our new findings force us to update the model of

how Ste5 directs the flow of information (Figure 7). Most signifi-

cantly, an updated model must include a role for the Ste5-ms

domain in cocatalyzing Fus3 phosphorylation by Ste7. It is also

now clear that there are both activating and downregulatory

interaction sites for Fus3 on the scaffold (Figures 7A and 7B).

Activation of the mating response requires recruitment of Fus3

to Ste7 docking motifs, and a transient, catalytic interaction

with Ste5-ms. Conversely, downregulation of pathway output

is mediated in part by recruitment of Fus3 to its strong binding

site on Ste5.

An updated model of the mating pathway is summarized

below. Binding of a-factor to its receptor (Ste2) leads to dissoci-

ation of the Gb protein (Ste4) from the Ga subunit (Gpa1).

Activated Ste4, which is membrane tethered, binds to Ste5,
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recruiting it to the membrane, allowing the membrane-localized

PAK kinase, Ste20, to phosphorylate and activate the MAPKKK

Ste11 (bound to Ste5). Phosphorylated Ste11 then activates

scaffold-associated MAPKK Ste7. We now understand that

Ste7, only when phosphorylated and bound to the Ste5-ms

domain can activate Fus3, since both Ste7 and the Ste5-ms

domain are required to work together catalytically to promote

Ste7/Fus3 phosphorylation. In support of this model, a muta-

tion (E756G) that maps to the coactivator loop of Ste5-ms was

previously shown to destroy the ability of Ste7 to activate Fus3

(but not Kss1) during the mating response, in vivo (Schwartz

and Madhani, 2006). In our model, Fus3 recruitment to the scaf-

fold complex is still important but is carried out via a docking

interaction with Ste7, not by binding to Ste5. These docking

motifs are one of several absolutely required elements for

Ste7/ Fus3 phosphorylation. After activation, Fus3 dissociates

from the Ste5 complex to enter the nucleus, where it can exert its

downstream effects.

While there is a strong (KD = 1 mM) binding site for Fus3 on Ste5

(residues 288–316), this site does not appear to play a significant

role in directing the main forward flow of signaling information

down the MAPKKK/MAPKK/MAPK cascade. Rather, this

site downregulates mating signaling—through feedback phos-

phorylation of Ste5 by Fus3—and thereby tunes the amplitude

and dynamics of pathway output (Bhattacharyya et al., 2006a).

Other studies have also suggested a role for this regulatory

Fus3-binding domain in tuning the precise input/output behavior

of the pathway: mutation of this domain leads to misregulation of

mating projection formation, and improper decision making

between budding, shmooing, and elongated growth cell fates

(Hao et al., 2008; Maeder et al., 2007).

Evolution of New Pathways: How the Ste5 Scaffold May
Have Facilitated the Functional Divergence of the Fus3
and Kss1 MAPKs
New signaling pathways are thought to emerge through duplica-

tion of signaling components, followed by their functional diver-

gence. This mechanism of evolution raises issues of specificity –

when components are duplicated, how is improper crosstalk

avoided, given that they will interact with the same upstream

and downstream partners? Based on their similarity, it seems

likely that Fus3 and Kss1 originated from just this type of dupli-

cation event. Although a simple tethering scaffold protein can

contribute to distinguishing the partners of such close homologs,

it seems unlikely that a shift in relative affinities would be suffi-

cient to completely prevent misactivation by the wrong upstream

pathway. In this case, it seems particularly important that acti-

vated Ste7 that results from starvation input (filamentous growth

pathway) does not lead to launching of the costly mating

response.

To avoid misactivation, it appears that Fus3 has evolved

a safety catch mechanism that distinguishes it from Kss1. We

postulate a model in which the activation loop of Fus3 is

‘‘locked,’’ making it a poor substrate for Ste7 alone. However,

this lock can be kinetically opened by the Ste5-ms domain.

Thus, as discussed previously by Flatauer et al., Fus3 can only

be phosphorylated by Ste7 that is activated and bound within

the Ste5 complex. Active Ste7 associated with Ste5 is likely to
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Figure 7. An Updated Model for How the Ste5 Scaffold Controls Information Flow in the Mating MAPK Pathway

(A) Ste5 has upregulatory (activating) and downregulatory interactions with Fus3. The strong, previously identified Fus3 binding site on Ste5 (Fus3-BD, KD = 1 mM)

is not required for Ste7/Fus3 phosphorylation, but rather is important for tuning down pathway output in vivo. Interactions that promote Fus3 phosphorylation

involve the Ste5-ms domain (in cooperation with Ste7).

(B) Cartoon summarizing various activities of Ste5. The Ste5-mediated complex has several critical tethering interactions (Ste5-Ste11, Ste5-Ste7, and Ste7-Fus3)

essential for linear propagation of the mating pathway signal. In addition, Ste5-ms domain is an essential cofactor promoting catalysis of the Ste7/Fus3 phos-

phorylation reaction.

(C) Detailed model of minimal interactions in the mating scaffold complex required for Ste7/Fus3 phosphorylation. Ste7 binds strongly to both Ste5-ms domain

(via surface on Ste5-ms colored blue) and Fus3 (docking motifs on Ste7 bind to docking groove on Fus3, colored gray), thereby tethering two proteins that nor-

mally interact only very weakly. Ste5-ms contains a coactivator loop (red surface) which promotes Fus3’s phosphorylation by Ste7. Fus3’s activation loop is

colored red. Interaction affinities, where known, are indicated. Interactions that modulate kcat and KM of Fus3 phosphorylation by Ste7 are indicated by black

boxes. Models for Fus3 (PDB code 2B9F) and Ste5-ms (this study) are derived from crystal structures. Ste7’s kinase domain was modeled from the structure

of a homologous mammalian MAPKK (MKK7) using the threading program Phyre (Bennett-Lovsey et al., 2008).
only arise via activation by mating input. While it is formally

possible that Ste7 activated by starvation input could subse-

quently bind to Ste5, there is evidence that Ste5 may not be

competent for Fus3 activation in unstimulated cells. Ste5 trans-

locates to the membrane upon alpha-factor stimulation (not by

filamentation input) and it has been hypothesized that this trans-

location promotes a conformational change in Ste5 that is impor-

tant for mating pathway activation (Flatauer et al., 2005; Inouye

et al., 1997b; Sette et al., 2000). In support of this, a number of

mutations or fusions to Ste5 that enhance membrane localiza-

tion lead to increased mating signaling (Winters et al., 2005). It

is possible that Ste7 only binds to the scaffold, or that Ste5-ms

is only accessible for Ste7-Fus3 catalysis, when the Ste5 scaf-

fold is in the proper conformation at the membrane.
Phylogenetic analysis of close fungal species supports this

general duplication-divergence model involving scaffold coca-

talysis (Figure S9). Within the subphylum Saccharomycotina,

the majority of genomes contain two homologs of the mamma-

lian ERK MAPK (the subfamily encompassing Fus3 and Kss1),

consistent with a duplication of this gene prior to this branch-

point. All ten fungi that contain a Ste5 sequence homolog fall

within this subphylum and have a Fus3/Kss1 (ERK) duplication.

This data is consistent with a model in which Ste5 was one solu-

tion for promoting the functional divergence of the duplicated

MAP kinases, Fus3 and Kss1. Other mechanisms to diverge

these kinases have also evolved: for example misactivation of

the filamentous response by mating input is blocked by Fus3-

induced degradation of the filamentous growth transcription
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factor, Tec1 (Bao et al., 2004; Chou et al., 2004). Interestingly,

Tec1 is present only in the fungi that also have Ste5

(Figure S9). Species within Saccharomycotina that lack Ste5

and Tec1 presumably have alternative mechanisms to promote

functional divergence, perhaps yet undiscovered scaffolds. It

will be exciting to see if other pathway scaffold proteins,

including those involved in mammalian MAPK signaling (e.g.,

JIP, KSR, etc.) utilize a kind of direct catalytic assistance to

promote specific kinase-substrate reactions, and whether these

are associated with other evolutionary duplication-divergence

branchpoints.

EXPERIMENTAL PROCEDURES

Protein Expression and Purification

For expanded methods, see Supplemental Data. Fus3, Ste5 scaffold trunca-

tions, and Ste5-ms variants were expressed in Rosetta (DE3) pLysS E.coli

cells. Ste7 variants and Kss1 were expressed in Spodoptera frugiperda

(SF9) cells. Purification was carried out as described previously (Remenyi

et al., 2005), with some modifications (see Supplemental Data).

In Vitro Kinase Assays

Trulight Kinase Assay

The Ste7-to-MAPK phosphorylation reactions were measured in a continuous,

high-throughput fashion using the Trulight Superquenching Kinase Assay (Kit

#539710, EMD Biosciences) in 96-well plates on a SpectraMax Gemini XS

fluorescence plate-reader (Molecular Devices). Kinases and scaffold were

added at 50 nM concentration unless written otherwise. Trulight assay kit

includes proprietary sensor beads coated with a fluorescent polymer,

a MAPK-specific peptide (LVEPLTPSGEAPNQK) labeled with a Lissamine

Rhodamine B quencher, and Assay Buffer. Kinase activity (phosphorylation

of the peptide) is monitored as a loss in fluorescence over time. For more

details on the Trulight Assay, see Figures S2D–S2F.

Quantitative Anti-Phospho MAPK Western Blots

Quantitative in vitro western blots, used to monitor accumulation of pTyr/pThr

on the activation loop of either Fus3 or Kss1, were carried out using a primary

anti-phospho p44/42 MAPK antibody (Cell Signal Technology, #9101) which

recognizes both Fus3 and Kss1 equally (Figure S1D), and a secondary IRDye

800CW Goat Anti-Rabbit IgG antibody (Li-Cor, #926-32211). Kinase reactions

contained 50 nM enzyme (GST-Ste7EE or GST-Ste7EE-ND2) and 1 mM Ste5

scaffold, with varying concentration of substrate (either Fus3 or Kss1), unless

otherwise noted. Standard kinase assay buffer included 100 mM NaCl, 25 mM

Tris (pH 8), 0.05% NP-40 and 2 mM TCEP (plus 2 mM MgCl2 and 2 mM ATP).

Note, we varied the concentration of enzyme (10 nM and 250 nM Ste7EE-ND2)

to test if this could drastically alter the kcat and KM values for Fus3 phosphor-

ylation—it did not. Blots were visualized using the 800 nm channel on Li-Cor

Odyssey Imaging System and quantified using Odyssey 2.1 software (see

Figure S4 for further details). Rate plots for Fus3 and Kss1 phosphorylation

were fit to the Michaelis-Menten equation (V = k2[E][S]/(KM+[S]), using

nonlinear least-squares method in Matlab. The KM and kcat values were calcu-

lated as the average of fitting the Michaelis-Menten equation to three separate

curves (from three separate experiments), and errors reported as standard

deviation. Kact plots were fit to a simple binding equation (y = a1 + a2(([X]/

KD)/(1+([X]/KD)))), also in Matlab.

Radioactive Kinase Assay

Phosphorylation of the general kinase substrate, Myelin Basic Protein (Sigma),

by GST-Ste7EE was monitored by the rate of incorporation of 32P using auto-

radiography. Assay conditions included: 0.5 mM GST-Ste7EE, 2.5 mM Ste5-ms

(where present), and standard kinase assay buffer (listed above) plus 10 mM
32P-ATP, 500 mM cold ATP, and 1 mM MgCl2.

Protein Binding Assays

Fluorescence Polarization

Binding of GST-Ste7wt and Fus3 to fluoroscein-labeled Ste5-ms was moni-

tored using anisotropy. We removed a surface exposed Cysteine (residue
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724), and added a Lys-Cys-Lys motif to the N-terminus of Ste5-ms for malei-

mide-fluoroscein labeling. The modified protein is called ‘KCK-Ste5-ms’. Inter-

action with 5nM KCK-Ste5ms was measured in standard buffer (plus 3 mM

Maltose Binding protein and cell lysate, to stabilize proteins and reduce

non-specific interactions) using 384-well Corning plates on a Molecular

Dynamics Analyst AD (ex. filter 485 nm, em. filter 530 nm). Curves were fit to

a simple binding equation (y = a1 + a2(([X]/KD)/(1+([X]/KD)))), in Matlab.

Pull-Down Binding Assays

10 mg of MBP-Ste5-ms was incubated with 10 mg of GST-Ste7 for 20 min and

then added to 15 uL of Amylose resin (NEB) for 1 hr at 4�C. Beads were washed

(using 100 mM NaCl, 25 mM Tris [pH 8], 10% Glycerol, 0.1% IGEPAL, 2mM

DTT) and protein was eluted with 23 SDS-loading dye and boiling.

Structure Determination

Crystals of Ste5-ms were obtained by mixing 10 mg/mL of protein (1:1 vol:vol)

with a solution containing 20% PEG 3350, 0.1 M citrate (pH 5.8), in hanging

drops at room temperature. Crystals were visible within two days and grew

to a maximum size of 0.5 mm. Native crystals, in cryopreservant, diffracted

to 1.6 Å at BL8.3.1 at the Advanced Light Source at LBNL. Phases were

derived experimentally from crystals soaked in a 10 mM HgCl2 solution (20%

PEG3350, 0.1 M citrate [pH 5.8]) for 30 min. Methods for data processing

and refinement can be found in the Supplemental Experimental Procedures.

X-ray diffraction data and refinement statistics are shown in Table S2.

ACCESSION NUMBERS

The Ste5-ms structure has been deposited in the Protein Data Bank under the

ID code 3FZE.
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figures, two tables, and Supplemental References and can be found with

this article online at http://www.cell.com/supplemental/S0092-8674(09)
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